面向开放世界的深度学习

Motivation

尽管深度学习已经在各大数据集上有优异表现,但在实际动态变化的世界里,这些预先学习了数据集知识的模型却难以适应多变、未知。最近,已经有一些学者意识到了这个重要问题。本文将增量式记录目前科学界对于开放世界学习问题的一些成果,以便学习、查阅。

论文列表

1. 面向开放世界的目标检测

2. 面向开放世界的深度估计

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值