操作系统面试基础知识点 操作系统的几大模块CPU的调度物理、虚拟内存的管理文件系统的管理中断和设备驱动(I/O)shell + kernelshell指的是面向用户的外壳,比如windows gui。kernel是操作系统的核心管理模块。操作系统kernel的特点并发共享虚拟异步...
理解深度优先搜索和广度优先搜索 深度优先搜索其实是一种递归的思想。前序遍历: void dfs(TreeNode* root){ if(root==nullptr) return; process(root->val); //当前节点数据处理 dfs(res,root->left); dfs(res,root->right); }中序遍历: void dfs(TreeNode* root){
实用python代码分析工具(错误跟踪、效率和内存泄漏分析) traceback收集错误信息,并打印import traceback try: ...#代码块 except Exception as e: traceback.print_exc()pyinstrument代码效率分析from pyinstrument import Profilerprofiler = Profiler()profiler.start() ...# 代码块profiler.stop()print(profiler.out
利用CSF算法实现地面点云的粗分割 参考文章:点云地面点滤波(Cloth Simulation Filter, CSF)“布料”滤波算法介绍安装项目地址: https://github.com/jianboqi/CSF项目有详细安装说明,对于python版本,先下载整个仓库,然后cd到里面的python目录。python setup.py buildpython setup.py install实验def csf_ground_segmentation(data): """ cloth simulat
指针总结:指针的使用有哪些需要注意的点? 1. 初始化防止出现未知内存操作危险指针一定要初始化后进行解引用操作(*p),不然可能出现对未知内存块的操作。原因是不初始化的指针一开始的指向是随机的。2.指针在动态内存分配的应用new分配内存,返回地址。delete删除指针指向内存,但不会删除指针(变量)本身。new和delete应成对使用,否则发生内存泄露。内存泄露:指的是那些被分配的内存由于没有进行回收处理,无法再进行使用。几点注意:不用delete释放不是new分配的内存不要使用delete释放同一内存两次如果使用new [
深度学习理论学习过程中的一些常见问题 1. 样本归一化:预测时的样本数据同样也需要归一化,但使用训练样本的均值和极值计算,这是为什么?答:可以从三个角度理解:众所周知,我们的数据集分为训练集和测试集,对于测试集的均值方差归一化,不能用测试集的均值和方差,而要用训练集的均值和方差,因为真实数据中很难得到其均值和方差。另外,网络参数是从训练集学习到的,也就是说,网络的参数尺度是与训练集的特征尺度一致性相关的,所以应该认为测试数据和训练数据的特征分布一致。最后,训练集数据相比测试集数据更多,用于近似表征全体数据的分布情况。总结就是认为测试数据的分
深入理解计算机操作系统-第一章阅读摘要 从源码到可执行程序的四个过程:预处理(读取替换头文件)、编译(到汇编语言)、汇编(到机器语言)、链接(可执行目标程序)为什么需要了解编译系统的工作原理:优化程序性能、理解链接错误、避免安全漏洞操作系统:实现了上层应用程序与低层硬件的交互进程:对于运行程序的一种抽象并发:多个进程之间交错执行–》上下文(状态)切换线程:一个进程可以由多个称为线程的执行单元构成虚拟存储技术:一种存储空间的抽象,每个进程看到的存储器一致,称为虚拟地址空间内存四区:代码数据区、堆、栈、全局区...
论文阅读:Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes 论文地址:http://arxiv.org/abs/2101.06085摘要语义分割是自动驾驶汽车了解周围场景的一项关键技术。 对于实际的自动驾驶车辆,不希望花费大量的推理时间来获得高精度的分割结果。 使用轻量级架构(编码器-解码器或两条路径)或对低分辨率图像进行推理,最近的方法实现了非常快速的场景解析,甚至在单个1080Ti GPU上以超过100 FPS的速度运行。 但是,这些实时方法和基于膨胀主干的模型之间在性能上仍存在明显差距。 为了解决这个问题,我们提出了新颖的深度双分辨率网络(DDRNet),
如何从Ros bag包中提取图像数据? 从录好的数据包中将图片按帧保存到文件夹,生成数据集#coding:utf-8import rosbagimport rospyimport cv2import imutilsfrom sensor_msgs.msg import Imagefrom cv_bridge import CvBridgefrom cv_bridge import CvBridgeErrorpath='/path/to/image/' #存放图片的位置class ImageCreator(): d
面向开放世界的深度学习 Motivation尽管深度学习已经在各大数据集上有优异表现,但在实际动态变化的世界里,这些预先学习了数据集知识的模型却难以适应多变、未知。最近,已经有一些学者意识到了这个重要问题。本文将增量式记录目前科学界对于开放世界学习问题的一些成果,以便学习、查阅。论文列表1. 面向开放世界的目标检测Towards Open World Object Detection(CVPR2021):论文:https://arxiv.org/pdf/2103.02603.pdf代码:https://github.
代码编辑神器Vim快捷学习 Vimvim是一个能够提高效率的编辑器!!!vim的多种模式normal模式(普通模式):进入vim默认是普通模式。使用esc从任意模式回到普通模式;默认是普通模式的原因:大多时候是浏览代码。Insert插入模式:iaocommand命令模式:显示行号:在normal模式下Ctrl/Command + : 然后nu ;竖直方向(水平方向)分屏:在normal模式下Ctrl/Command + : 然后vs(sp) ;替换操作将xxx全局(/g)替换成yyy:在normal模式下Ctrl/Co
多目标跟踪论文阅读:Track to Detect and Segment: An Online Multi-Object Tracker Track to Detect and Segment: An Online Multi-Object Tracker[x]作者:Wu, Jia. lianCao, Jiale. Song, Liangchen[x]团队/机构:SUNY Buffalo. TJU. Horizon Robotics[x]Journal:IEEE Conference on Computer Vision and Pattern Recognition (CVPR)[x]年份:2021[x]论文链接:http://a
全景分割论文阅读:Efficientps: Efficient Panoptic Segmentation 论文链接:https://arxiv.org/pdf/2004.02307.pdf项目地址:https://github.com/DeepSceneSeg/EfficientPS
目标检测论文阅读:Probabilistic two-stage detection(CenterNet2) [x]作者:Xingyi Zhou 1 Vladlen Koltun 2 Philipp Kr¨ahenb¨uhl 1 Abstract[x]团队/机构:UT Austin 和 Intel Labs[x]论文链接:http://arxiv.org/abs/2103.07461[x]项目地址:https://github.com/xingyizhou/CenterNet2
目标检测论文阅读总结:单阶段目标检测FCOS系列 1、FCOS v1(FCOS: Fully Convolutional One-Stage Object Detection)提出了一种全卷积的一阶段对象检测器(FCOS),以按像素预测的方式解决对象检测,类似于语义分割。 几乎所有最新的物体检测器(例如RetinaNet,SSD,YOLOv3和Faster R-CNN)都依赖于预定义的锚框。 相反,我们建议的探测器FCOS不含锚盒,也不含建议盒。 通过消除预先定义的锚定框集,FCOS完全避免了与锚定框相关的复杂计算,例如训练期间的重叠计算。 更重要的是,