最近工作不忙,重温一下大学的算法学习,记录巩固一下。下面介绍一下计数排序。
计数排序原理?
计数排序(counting sort)是一个非基于比较的排序算法,该算法于1954年由 Harold H. Seward 提出。它的优势在于在对一定范围内的整数排序时,它的复杂度为Ο(n+k)(其中k是整数的范围),快于任何比较排序算法。 当然这是一种牺牲空间换取时间的做法,而且当O(k)>O(nlog(n))的时候其效率反而不如基于比较的排序(基于比较的排序的时间复杂度在理论上的下限是O(nlog(n)), 如归并排序,堆排序)
计数排序对输入的数据有附加的限制条件:
1、输入的线性表的元素属于有限偏序集S;
2、设输入的线性表的长度为n,|S|=k(表示集合S中元素的总数目为k),则k=O(n)。
在这两个条件下,计数排序的复杂性为O(n)。
计数排序的基本思想是对于给定的输入序列中的每一个元素x,确定该序列中值小于x的元素的个数(此处并非比较各元素的大小,而是通过对元素值的计数和计数值的累加来确定)。一旦有了这个信息,就可以将x直接存放到最终的输出序列的正确位置上。例如,如果输入序列中只有17个元素的值小于x的值,则x可以直接存放在输出序列的第18个位置上。当然,如果有多个元素具有相同的值时,我们不能将这些元素放在输出序列的同一个位置上,因此,上述方案还要作适当的修改。
实现
//计数排序
function countSort(arr){
let arrMin = Math.min(...arr);//获取最小值
let arrMax = Math.max(...arr);//获取最大值
let result=[];//结果存储
let arr_ = new Array(arrMax-arrMin+1).fill(0);
for(let i = 0 ; i < arr.length ; i++){
arr_[arr[i]-arrMin]++;
}
for(let j = 0;j<arr_.length;j++){//遍历arr_下标数组来生成最终结果
for(let k = arr_[j];k>0;k--){
result.push(j+arrMin);
}
}
return result;
}