点集拓扑——基本知识点整理归纳

​   假如全集为 X X X,对于 X X X中的一个点集 S S S S ⊂ X S\subset X SX,且 S S S非空,这里用 ⊂ \subset 表示 S S S不是 X X X本身,与 ⊆ \subseteq 做区分)来说,全集 X X X中的点可以被不重叠地分为三类,或者说这三类点构成一个全集的分割,并且,这样的分割主要有两种:


第一种:
X = S ∘ ⊎ ∂ S ⊎ ( S c ) ∘ X = S^{\circ} \uplus \partial S\uplus (S^{c})^{\circ} X=SS(Sc)
上式中的集合运算符号是 ⊎ \uplus ,意为“无交并”,即参与运算集合的交集为空;下面分别叙述式中三个集合的定义,应充分理解它们为什么交集为空,它们为何能构成全集的分割:

S ∘ S^{\circ} S:集合 S S S的“内部”,通常记为 S ∘ S^{\circ} S i n t ( S ) \mathrm{int}(S) int(S)

  ​ 集合内部的点被称为集合的内点(如果 x ∈ S x\in S xS存在一个 x x x的邻域 U ( x ) U(x) U(x),使得 U ( x ) ⊆ S U(x)\subseteq S U(x)S,那么称 x x x S S S的内点)

( S c ) ∘ (S^{c})^{\circ} (Sc):集合 S S S的“外部”

​   集合的外部也可以被理解为集合的补集(集合 S S S相对于全集 X X X的补集记为 S c S^{c} Sc S c = { x ∣ x ∈ X , x ∉ S } S^{c} = \{x|x\in X, x\notin S\} Sc={xxX,x/S})的内部

∂ S \partial S S:集合 S S S的边界

​   集合的边界点(如果对于 x x x任意邻域 U ( x ) U(x) U(x),总是有 U ( x ) ∩ S ≠ ∅ U(x)\cap S \neq \empty U(x)S= U ( x ) ∩ S c ≠ ∅ U(x)\cap S^{c} \neq \empty U(x)Sc=,那么称 x x x S S S的边界点)构成的集合被称为集合的边界



第二种:
X = S ′ ⊎ S i ⊎ ( S c ) ∘ = S ˉ ⊎ ( S c ) ∘ \begin{aligned} X &= S{'} \uplus S^{i} \uplus (S^{c})^{\circ}\\ &= \bar{S} \uplus (S^{c})^{\circ} \end{aligned} X=SSi(Sc)=Sˉ(Sc)
结合第一种全集的分割,不难发现有: S ˉ = S ′ ⊎ S i = S ∘ ⊎ ∂ S \bar{S} = S{'} \uplus S^{i} = S^{\circ} \uplus \partial S Sˉ=SSi=SS成立,上式中新出现的三种集合定义如下:

S ′ S{'} S:集合 S S S的导集

  ​ 集合 S S S的所有聚点(如果对于 x x x任意去心邻域 U ˚ ( x ) \mathring{U}(x) U˚(x),总是有 U ˚ ( x ) ∩ S ≠ ∅ \mathring{U}(x)\cap S \neq \empty U˚(x)S=,那么称 x x x S S S的聚点)组成的集合被称为 S S S的导集

S i S^{i} Si:集合 S S S的孤立点集

​   集合 S S S孤立点(如果 x ∈ S x\in S xS存在一个 x x x的去心邻域 U ˚ ( x ) \mathring{U}(x) U˚(x),使得 U ˚ ( x ) ∩ S = ∅ \mathring{U}(x)\cap S = \empty U˚(x)S=,那么称 x x x S S S的孤立点)组成的集合

S ˉ \bar{S} Sˉ S S S的闭包,通常记为 S ˉ \bar{S} Sˉ c l ( S ) \mathrm{cl}(S) cl(S)

  ​ 闭包的定义与导集的定义很相似,但从上式中可看出,闭包还包括了孤立点集,集合的闭包是满足如下条件的点集:对于 x x x任意邻域 U ( x ) U(x) U(x),总是有 U ( x ) ∩ S ≠ ∅ U(x)\cap S \neq \empty U(x)S=




在这里插入图片描述

​   用上图来示意内部、边界与原本集合的关系,最左边的图中,所有用蓝色着色的地方属于 S S S用实线标出的边界属于 S S S,但用虚线标出的边界不属于 S S S,显然,该集合有一个孤立点,并且集合内部有一个不属于该集合的点(集合内部有一个“洞”)

  ​ 中间的图是集合的内部,包含了集合中的所有内点,可以看出,所有边界点和孤立点都不是内点;最右边的图是集合的边界,集合的边界点不一定属于该集合,除了大块区域的边界点之外,集合的边界还包括孤立点和集合内部的“洞”



在这里插入图片描述

​   用上图来示意闭包、导集与原本集合的关系;中间的图是该集合的导集,导集包含了集合的所有聚点,能看出导集包含了所有内点,并且还包含了大块区域的边界以及集合内部的“洞”,但导集不包含孤立点;最右边的图是该集合的闭包,闭包在导集的基础之上还包含了孤立点集


注:

  1. 实空间当中,孤立点与集合内部的“洞”也属于集合的边界
  2. ∂ S = ∂ S c \partial S = \partial S^{c} S=Sc
  3. 聚点和孤立点的定义互斥
  4. 集合的闭包也有两种分割,即 S ˉ = S ∘ ⊎ ∂ S = S ′ ⊎ S i \bar{S} = S^{\circ} \uplus \partial S = S{'} \uplus S^{i} Sˉ=SS=SSi
  5. 集合的内点和孤立点一定属于该集合
  6. 集合的边界点和聚点不一定属于该集合
  7. S ∘ ⊆ S ⊆ S ˉ S^{\circ}\subseteq S\subseteq \bar{S} SSSˉ

  ​ 除了几种上述定义之外,点集 S S S还可以被归类为开集闭集

  • 开集:如果一个集合中的点全是该集合的内点,那么这个集合是开集,显然,集合的内部是开集(可以把开集简单理解为不包含边界的集合,开集不允许包含孤立点,开集允许集合中有“洞”

  • 闭集:如果一个集合包含了它的所有聚点,那么这个集合是闭集,换言之:如果 S ′ ⊆ S S{'}\subseteq S SS,那么 S S S是闭集,显然,集合的导集和闭包是闭集,集合的边界也是闭集(可以把闭集简单理解为包含边界的一整块并附加若干孤立点,闭集允许包含孤立点,闭集不允许集合中有“洞”

​   另外,闭集也有其他等价定义,如:1)一个集合是闭集当且仅当它的补集是开集2)一个集合是闭集当且仅当 S ˉ = S \bar{S}=S Sˉ=S;空集和全集比较特殊,它们既是开集也是闭集

  • 2
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值