点集拓扑学|1. 度量空间

本文介绍了点集拓扑学的基本概念,从度量空间开始,包括度量的定义、球的概念,以及开集和闭集的定义。通过一系列的例子,如欧几里得度量空间、离散度量空间、豪斯多夫度量,展示了度量空间的多样性。此外,还讨论了度量空间中的开集性质和闭集定义,并证明了单点集合的闭性质。
摘要由CSDN通过智能技术生成

与数学中的许多讨论对象一样,点集拓扑学(general topology)中的基本概念无外乎来自于我们最朴素的空间感受。由这种感受作为开端,我们设想在任意维度甚至任意定义下的空间中的集合的性质——这基本上成为了点集拓扑学的基调——因此,纵使是当我们的问题开始变得抽象和极端的时候,这种朴素的空间感受依然若隐若现其中——当然,这也是这些问题令人着迷的地方。

从本篇开始的所有的文章都整理自我学习点集拓扑学时的个人笔记。在这些文章里,你看不到什么考试中的难题——毕竟,数学只是我的一项爱好,因而从一开始就不需要面对任何考试——其宗旨是在于展现诸问题之间的联系。只要你具备集合论的基础知识,并大致了解微积分基本原理,这里所有的东西对你来说都不会难懂。唯独,文章中不会对引理、定理以及推论作出区别,而统称它们为命题。

以下为第一篇。它将简单地展现距离观念在集合论中的推广,由此,作为进入拓扑空间最初的入口。

定义:度量空间

X X X 为任意集合。一个函数 ρ : X × X → R ≥ 0 \rho: X \times X \to \mathbb R_{\ge 0} ρ:X×XR0 被称作是 X X X 上的一个度量(metric),当且仅当该函数符合度量公理(metric axioms);即,对于任何 x , y , z ∈ X x,y,z \in X x,y,zX

  • ρ ( x , y ) = 0 \rho(x, y) = 0 ρ(x,y)=0 当且仅当 x = y x = y x=y
  • ρ ( x , y ) = ρ ( y , x ) \rho(x, y) = \rho(y, x) ρ(x,y)=ρ(y,x)
  • ρ ( x , z ) + ρ ( y , z ) ≥ ρ ( x , z ) \rho(x,z) + \rho(y, z) \ge \rho (x, z) ρ(x,z)+ρ(y,z)ρ(x,z)

根据上述条件,我们称有序对 ( X , ρ ) (X, \rho) (X,ρ) 为一个度量空间(metric space)。


定义:球

在一个度量空间 ( X , ρ ) (X, \rho) (X,ρ) 中,以一点 x x x 为中心,以 ε ∈ R > 0 \varepsilon \in \mathbb R_{>0} εR>0 为半径的开球(open ball),或简称,被定义为这样一个集合:

B ( x , ε ) = { y ∈ X : ρ ( x , y ) < ε } . B(x, \varepsilon) = \{ y \in X : \rho(x,y) < \varepsilon \}. B(x,ε)={ yX:ρ(x,y)<ε}.

上述条件下的闭球(closed ball)则被定义为

B ‾ ( x , ε ) = { y ∈ X : ρ ( x , y ) ≤ ε } . \overline B(x, \varepsilon) = \{ y \in X : \rho(x,y) \le \varepsilon \}. B(x,ε)={ yX:ρ(x,y)ε}.


下面,我将举一些例子,其中,例 1 和例 2 较为重要,会贯穿于全文中的许多例子中。例 3 开始,我只是为了展现度量空间的诸多可能性而将它们写出来,不感兴趣的话可以跳过 例 3 到例 5。


例 1

一个欧几里得度量空间 ( X , ρ ) (X, \rho) (X,ρ) 是任意集合 X X X 具备了欧几里得度量 ρ \rho ρ。该空间中中任意两点 x x x y y y 之间的距离由毕达哥拉斯定理定义为

ρ ( x , y ) = ( ∑ i = 1 n ∣ x i − y i ∣ 2 ) 1 2 . \rho(x,y) = \left( \sum_{i = 1}^n |x_i - y_i|^2 \right)^\frac{1}{2}. ρ(x,y)=(i=1nxiyi2)21.

类似的形式还可以为我们可以定义出一个 X X X 上的度量集合:

ρ p ( x , y ) = ( ∑ i = 1 n ∣ x i − y i ∣ p ) 1 p , \rho_p (x,y) = \left( \sum_{i = 1}^n |x_i - y_i|^p \right)^\frac{1}{p}, ρp(x,y)=(i=1nxiyip)p1,

其中, p ∈ Q ‾ ≥ 1 p \in \overline{\mathbb Q}_{\ge 1} pQ1。欧几里得度量即 p = 2 p = 2 p=2 时的情况。需要注意的是,此处 p p p 是拓展实数集的一个元素,即 p = ∞ p = \infty p= 同样是成立的;此时

ρ ∞ ( x , y ) = max ⁡ i ∈ { 1 ,   …   , n } ∣ x i − y i ∣ . \rho_\infty(x, y) = \max_{i \in \{1,\ \ldots \ , n\}} |x_i - y_i|. ρ(x,y)=i{ 1,  ,n}maxxiyi.


例 2

一个度量空间 ( X , ρ ) (X, \rho) (X,ρ) 被我们称为一个离散度量空间(discrete metric space),当且仅当对于任何 x , y ∈ X x, y \in X x,yX,我们定义它们之间的距离为

ρ ( x , y ) = { 0 , if  x = y ; 1 , else . \rho(x,y) = \begin{cases} 0 , & \text{if } x = y;\\ 1 , & \text{else}. \end{cases} ρ(x,y)={ 0,1,if x=y;else.

对于离散度量 ρ \rho ρ,与其等价的定义为

ρ ( x , y ) = ( s g n ( ρ ′ ( x , y ) ) ) 2 , \rho(x,y) = (\mathrm{sgn}(\rho'(x,y)))^2, ρ(x,y)=(sg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值