【复杂网络建模】真实网络数据集的读取和操作

概要

在复杂网络建模中,使用真实的网络数据集是理解和分析现实世界网络结构的关键。接下来将介绍如何使用 Python 中的工具库(如 NetworkX、Pandas 和 Matplotlib)来读取、操作和分析真实的网络数据集。我们将以一个具体的例子来展示整个过程,包括数据集的获取、加载、可视化和基本分析。

1.获取真实网络数据集的常用网址

1.1 Network Repository.

提示:此数据集网站数据集是.zip格式,解压后的数据是.mtx格式
链接: https://networkrepository.com/index.php

  • 将下载下来的数据集解压缩
import zipfile

f = zipfile.ZipFile("./data/inf-USAir97",'r') # 压缩文件位置

for file in f.namelist():
    f.extract(file,"./data")               # 解压位置
f.close()
  • 然后找到解压后的数据用记事本(或其他方式)打开,把前几行的非连边数据用%号注释掉
# 读取 .mtx 文件
matrix = mmread('./data/inf-USAir97.mtx')
# 转换为 NetworkX 图对象
G = nx.Graph(matrix)
# 输出节点数量和边数量
num_nodes = G.number_of_nodes()
num_edges = G.number_of_edges()
print(f"Number of nodes: {
     num_nodes}")
print(f"Number of edges: {
     num_edges}")
#Number of nodes: 332
#Number of edges: 2126

1.2 Stanford Large Network Dataset Collection

提示:此数据集网站数据集是.txt.gz格式
链接: https://snap.stanford.edu/data/

  • 读取数据
facebook = pd.read_csv(
    "./data/facebook_combined.txt.gz",
    compression="gzip",
    sep=" ",
    names=["source", "target"],
)
  • 输出网络节点和连边
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值