【复杂网络经典案例】无向和有向网络中心距离、效率及Delta中心性

概要

复杂网络理论涉及多种重要概念,包括无向和有向网络中的距离、效率和Delta中心性。这些概念有助于我们理解网络结构及其功能特性。

1.节点间的距离(Distance)

在网络科学中,更多的是关注两个节点 i i i和节点 j j j之间的最短路径,最短路径通常被称为他们之间的距离 d i j d_{ij} dij

  • 在无向网络中,距离通常指两个节点之间的最短路径长度,即连接这两个节点所需的最少边数。

  • 在有向网络中,距离可以分为两种:单向距离(从一个节点到另一个节点的最短路径长度)和双向距离(考虑两个节点之间所有可能的路径长度的平均值)。

  • 网络直径:网络直径 D D D为所有距离 d i j d_{ij} dij中的最大值: D = m a x 1 ≤ i , j ≤ N d i j D=max_{1\leq i,j\leq N}d_{ij} D=max1i,jNdij

  • 网络平均距离 < d > <d> <d>指网络中所有节点对之间最短路径长度的平均值,它能够反映整个网络的紧密程度和信息传递的效率。计算公式为:
    ⟨ d ⟩ = 1 N 2 ∑ j = 1 N ∑ i = 1 N d i j \langle d\rangle=\frac1{N^2}\sum_{j=1}^N\sum_{i=1}^Nd_{ij} d=N21j=1Ni=1Ndij注意:这个公式只测量出现在同一个网络连通分支中的节点对。我们可以使用广度优先搜索算法计算一个大网络的平均路径长度。
    无向图: 对于无向图来说 d i j d_{ij} dij = d j i d_{ji} dji d i i d_{ii} dii = 0,上面公式可以进行化简为: ⟨ d ⟩ = 2 N ( N − 1 ) ∑ i = 1 N ∑ j = i + 1 N d i j = 2 W ( G ) N ( N − 1 ) \langle d\rangle=\frac2{N(N-1)}\sum_{i=1}^N\sum_{j=i+1}^Nd_{ij}=\frac{2W(G)}{N(N-1)} d=N(N1)2i=1Nj=i+1Ndij=N(N1)2W(G)
    有向图: 对于有向图来说 d i j d_{ij} dij 不等于 d j i d_{ji} dji d i i d_{ii}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值