电商离线数仓项目-DWD层ETL数据清洗,最大亮点之自定义UDF函数

ODS层所得到的数据,是最原始的数据,保持原貌,不做任何的改变,例如 id:1 name:zhangsan类型字段加上字段值。在导入DWD层的时候,我们要对这个数据做处理,只取到value值,去除字段的名称。这里面用到UDF(一进一出)和UDTF(一进多出)。

展示一条最初始的数据:
在这里插入图片描述
这条数据,红色框起来的部分是基本字段对应一对一出。而蓝色框起来的部分是一进多出。所要的格式如下:
在这里插入图片描述

要对获取到的日志数据进行处理,去空,转义,清洗等等.这时候我就需要我们来对初始的原始数据进行清洗.日志服务器获取到的数据是往往json对象,因此要对json对象进行解析,通过自定义UDF/UDTF函数来对其进行清洗:

(1)新建一个maven工程,在新建的maven工程中,创建好包.(com.atguigu.udf),然后再对pom.xml中导入如下的所需依赖:

    <repositories>
        <repository>
            <id>spring</id>
            <url>https://maven.aliyun.com/repository/spring</url>
        </repository>
    </repositories>
    <properties>
        <project.build.sourceEncoding>UTF8</project.build.sourceEncoding>
        <hive.version>1.2.1</hive.version>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.apache.hive</groupId>
            <artifactId>hive-exec</artifactId>
            <version>${hive.version}</version>
        </dependency>
    </dependencies>
    <build>
        <plugins>
            <plugin>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>2.3.2</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                </configuration>
            </plugin>
            <plugin>
                <artifactId>maven-assembly-plugin</artifactId>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

UDF函数实现的思路:UDF函数有两个参数,一个是叫line也就是采集到的一条完整的日志数据,另一个参数是我们dwd层所创建的表的字段的string集合叫做keys。
首先将keys集合进行切割成String数组.接着将line切割成包含时间戳和json格式的数据,切割好之后,先做一个合法性的校验:判断切割好的数组长度是否为2和json格式的数据是否为空,如果错误.返回false。如果不为空,则创建jsonObject对象开始进行处理.通过遍历keys的中元素,取出jsonObject对象中所对应的值,并将其添加到StringBuilder对象中,最后将StringBuilder对象转成String并且返回。

package com.atguigu.udf;

import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.hive.ql.exec.UDF;
import org.json.JSONException;
import org.json.JSONObject;

public class BaseFieldUDF extends UDF {
    //line:整条的原始数据  jsonkeysString:公众字段keys的集合
    public String evaluate(String line,String jsonkeysString){
        //new 一个sb
        StringBuilder sb = new StringBuilder();
        //1.切割jsonkeys mid.uid,vc....
        String[] jsonkeys = jsonkeysString.split(",");
        //2.处理line 服务器时间|json
        String[] logContents = line.split("\\|");
        //3.合法性校验(判断空可以通过StringUtils.isBlank方法)
        if(logContents.length != 2 || StringUtils.isBlank(logContents[1])){
            return "";
        }
        //4.开始处理json
        try {
            JSONObject jsonObject = new JSONObject(logContents[1]);
            if(jsonObject==null){
                return "";
            }else{
                JSONObject base = jsonObject.getJSONObject("cm");
                if(base == null ){
                    return "";
                }else{
                    //循环遍历取值
                    for(int i =0;i<jsonkeys.length;i++){
                        String fieldName = jsonkeys[i].trim();
                        if(base.has(fieldName)){
                            sb.append(base.getString(fieldName)).append("\t");
                        }else{
                            sb.append(" ").append("\t");
                        }
                    }
                    sb.append(jsonObject.getString("et")).append("\t");
                    sb.append(logContents[0]).append("\t");
                }
            }
        } catch (JSONException e) {
            e.printStackTrace();
        }
     return sb.toString();
    }
    //主方法主要是用来做测试
    public static void main(String[] args) {

        String line = "1541217850324|{\"cm\":{\"mid\":\"m7856\",\"uid\":\"u8739\",\"ln\":\"-74.8\",\"sv\":\"V2.2.2\",\"os\":\"8.1.3\",\"g\":\"P7XC9126@gmail.com\",\"nw\":\"3G\",\"l\":\"es\",\"vc\":\"6\",\"hw\":\"640*960\",\"ar\":\"MX\",\"t\":\"1541204134250\",\"la\":\"-31.7\",\"md\":\"huawei-17\",\"vn\":\"1.1.2\",\"sr\":\"O\",\"ba\":\"Huawei\"},\"ap\":\"weather\",\"et\":[{\"ett\":\"1541146624055\",\"en\":\"display\",\"kv\":{\"newsid\":\"n4195\",\"copyright\":\"ESPN\",\"content_provider\":\"CNN\",\"extend2\":\"5\",\"action\":\"2\",\"extend1\":\"2\",\"place\":\"3\",\"showtype\":\"2\",\"category\":\"72\",\"newstype\":\"5\"}},{\"ett\":\"1541213331817\",\"en\":\"loading\",\"kv\":{\"extend2\":\"\",\"loading_time\":\"15\",\"action\":\"3\",\"extend1\":\"\",\"type1\":\"\",\"type\":\"3\",\"loading_way\":\"1\"}},{\"ett\":\"1541126195645\",\"en\":\"ad\",\"kv\":{\"entry\":\"3\",\"show_style\":\"0\",\"action\":\"2\",\"detail\":\"325\",\"source\":\"4\",\"behavior\":\"2\",\"content\":\"1\",\"newstype\":\"5\"}},{\"ett\":\"1541202678812\",\"en\":\"notification\",\"kv\":{\"ap_time\":\"1541184614380\",\"action\":\"3\",\"type\":\"4\",\"content\":\"\"}},{\"ett\":\"1541194686688\",\"en\":\"active_background\",\"kv\":{\"active_source\":\"3\"}}]}";
        String x = new BaseFieldUDF().evaluate(line, "mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,nw,ln,la,t");
        System.out.println(x);
    }

}

一进多出UDTF:的写法如下:

package com.atguigu.udtf;

import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import org.json.JSONArray;
import org.json.JSONException;

import java.util.ArrayList;

public class EventJsonUDTF extends GenericUDTF {

    //该方法中,我们将指定输出参数的名称和参数类型:
    @Override
    public StructObjectInspector initialize(ObjectInspector[] argOIs) throws UDFArgumentException {

        ArrayList<String> fieldNames = new ArrayList<String>();
        ArrayList<ObjectInspector> fieldOIs = new ArrayList<ObjectInspector>();
		//输出参数的名称和参数类型:
        fieldNames.add("event_name");
        //这一个语句的意思是:event_name和event_json的类型指定为String
        fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
        fieldNames.add("event_json");
        fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);

        return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames, fieldOIs);
    }

    //输入1条记录,输出若干条结果
    @Override
    public void process(Object[] objects) throws HiveException {

        // 获取传入的et
        String input = objects[0].toString();

        // 如果传进来的数据为空,直接返回过滤掉该数据
        if (StringUtils.isBlank(input)) {
            return;
        } else {

            try {
                // 获取一共有几个事件(ad/facoriters)
                JSONArray ja = new JSONArray(input);

                if (ja == null)
                    return;

                // 循环遍历每一个事件
                for (int i = 0; i < ja.length(); i++) {
                    String[] result = new String[2];

                    try {
                        // 取出每个的事件名称(ad/facoriters)
                        result[0] = ja.getJSONObject(i).getString("en");

                        // 取出每一个事件整体
                        result[1] = ja.getString(i);
                    } catch (JSONException e) {
                        continue;
                    }

                    // 将结果返回
                    forward(result);
                }
            } catch (JSONException e) {
                e.printStackTrace();
            }
        }
    }

    //当没有记录处理的时候该方法会被调用,用来清理代码或者产生额外的输出
    @Override
    public void close() throws HiveException {

    }
}

总结:
UDF:
创建MAVEN工程,导入HIVE相关的依赖,创建类去继承UDF类,自己写一校验的方法(evaluate),这个方法传染两个参数:一个是一条原始的数据line,一个是表字段用逗号分割的String,叫做keys :首先准备一个StringBuilder对象,然后分别对我们传入的两个参数进行切割,将keys集合通过split方法进行切割成String数组.将原始的一条数据line切割成包含时间戳和json格式的数据,切割好之后,先做一个合法性的校验:判断切割好的数组长度是否为2和json格式的数据是否为空,如果错误.返回false。如果不为空,则创建jsonObject对象开始进行处理.通过遍历keys的中元素,取出jsonObject对象中所对应的值,并将其添加到StringBuilder对象中,最后将StringBuilder对象转成String并且返回。
UDTF:
创建一个类,extends GenericUDTF类,实现三个方法:initialize(),process(),close()方法。
在initialize()方法中,我们将指定输出参数的名称和参数的类型:event_name,event_json。两个都是String类型。在process方法中,获取我们输入的json对象,遍历循环每一个事件,取出事件的名称和事件整体。最后将结果返回。close()方法,当没有记录处理的时候,方法会被调用,关闭资源。

一、课程简介随着技术的飞速发展,经过多年的数据积累,各互联网公司已保存了海量的原始数据和各种业务数据,所以数据仓库技术是各大公司目前都需要着重发展投入的技术领域。数据仓库是面向分析的集成化数据环境,为企业所有决策制定过程,提供系统数据支持的战略集合。通过对数据仓库中数据的分析,可以帮助企业改进业务流程、控制成本、提高产品质量等。二、课程内容本次精心打造的数仓项目的课程,从项目架构的搭建,到数据采集模块的设计、数仓架构的设计、实战需求实现、即席查询的实现,我们针对国内目前广泛使用的Apache原生框架和CDH版本框架进行了分别介绍,Apache原生框架介绍中涉及到的技术框架包括Flume、Kafka、Sqoop、MySql、HDFS、Hive、Tez、Spark、Presto、Druid等,CDH版本框架讲解包括CM的安装部署、Hadoop、Zookeeper、Hive、Flume、Kafka、Oozie、Impala、HUE、Kudu、Spark的安装配置,透彻了解不同版本框架的区别联系,将大数据全生态系统前沿技术一网打尽。在过程中对大数据生态体系进行了系统的讲解,对实际企业数仓项目中可能涉及到的技术点都进行了深入的讲解和探讨。同时穿插了大量数仓基础理论知识,让你在掌握实战经验的同时能够打下坚实的理论基础。三、课程目标本课程以国内电商巨头实际业务应用场景为依托,对电商数仓常见实战指标以及难点实战指标进行了详尽讲解,具体指标包括:每日、周、月活跃设备明细,留存用户比例,沉默用户、回流用户、流失用户统计,最近连续3周活跃用户统计,最近7天内连续3天活跃用户统计,GMV成交总额分析,转化率及漏斗分析,品牌复购率分析、订单表拉链表的设计等,让学生拥有更直观全面的实战经验。通过对本课程的学习,对数仓项目可以建立起清晰明确的概念,系统全面的掌握各项数仓项目技术,轻松应对各种数仓难题。四、课程亮点本课程结合国内多家企业实际项目经验,特别加入了项目架构模块,从集群规模的确定到框架版本选型以及服务器选型,手把手教你从零开始搭建大数据集群。并且总结大量项目实战中会遇到的问题,针对各个技术框架,均有调优实战经验,具体包括:常用Linux运维命令、Hadoop集群调优、Flume组件选型及性能优化、Kafka集群规模确认及关键参数调优。通过这部分学习,助学生迅速成长,获取前沿技术经验,从容解决实战问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦里Coding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值