面试技巧
文章平均质量分 88
ideas-workstyle
加油!
展开
-
SSD目标检测算法(Single Shot MultiBox Detector)
先前所写的RCNN系列目标检测算法都是先生成一些假定的bounding boxes,然后在这些bounding boxes上使用CNN提取特征,然后在经过一个分类器,来判断是不是我们的目标样本标签,在经过一个回归器,将我们最后得到假定的bounding boxes进行位置的调整。但是这类方法所需要的计算时间过长,很难用于实时的目标检测,当前你可以用牺牲精度来增加速度。本文提出的实时检测方法,消除了中间的 bounding boxes、pixel or feature resampling 的过程。虽然本文不原创 2020-05-25 15:51:37 · 671 阅读 · 0 评论 -
RCNN,Fast-RCNN,Faster-RCNN目标检测
这段时间看了一下目标检测这个方向关于深度学习的处理方法,包括RCNN,Fast-RCNN,Faster-RCNN的two-stage以及SSD系列和YOLO系列的one-stage,这篇博客将two-stage详细的讲解一下,有不准确的地方希望大佬指正!1.RCNN1.1 什么是目标检测本篇论文的题目是 《Rich feature hierarchies for accurate oject detection and semantic segmentation》,通俗地来讲就是一个用来做目标检测和语原创 2020-05-24 16:35:17 · 492 阅读 · 0 评论 -
CNN框架介绍(2)GoogleNet和ResNet
1. GoogleNet论文地址:https://arxiv.org/abs/1409.4842一般来说,提升网络性能最直接的方法就是增加网络深度和宽度,也就意味着网络存在大量的参数,但是大量的参数量会增加过拟合的可能性,而且会大大增加计算量。文章认为解决上述问题的根本方法就是将全连接甚至是一般的卷积层转化为稀疏连接,有关研究表明臃肿的稀疏网络可能被不失性能的转化。现在的目标就是有没有一种...原创 2020-05-04 16:28:10 · 789 阅读 · 1 评论 -
CNN框架介绍(1)AlexNet和VGG16
1. AlexNetAlexNet是2012年ImageNet竞赛冠军框架,也是在那之后,更多的神经网络框架相继被提出,论文地址可以在这里看到。整体的结构图如下所示:AlexNet共有八层,有60M以上的参数量。前五层为卷积层:convolutional layer;后三层为全连接层,fully connected layer。最后一个全连接层输出具有1000个输出的softmax。...原创 2020-05-03 17:01:06 · 2371 阅读 · 0 评论 -
卷积神经网络通俗易懂理解
1.前言卷积神经网络是当下AI人工智能深度学习的基础,CNN可以应用在场景分类,图像分类,现在还可以应用到自然语言处理(NLP)方面的很多问题,比如句子分类等。下面进行讲解。计算机视觉和 CNN 发展十一座里程碑2.神经元神经网络是由大量的神经元相互连接而成的,每个神经元接受线性组合输入之后,刚开始只是简单地线性加权,后给每个神经元加上了非线性的激活函数,从而进行非线性变换后输出,每两个神...原创 2020-04-30 16:24:28 · 10960 阅读 · 1 评论 -
模型融合和提升算法详解(bagging和boosting)
1.两者的区别(1)样本的选择上:Bagging:训练集是在原始数据上进行有放回的随机抽样,在原始数据中选出的各个训练集是相互独立的。Boosting:每一轮的训练集不变,只是训练集当中每一个样本在分类器当中的权重发生变化,且权重是根据上一轮的分类结果进行调整。(2)样本权重:Bagging:进行均匀抽样,每一个样本的权重相等。Boosting:根据上一轮分类结果的错误率不断调整样本的权重,错...原创 2020-04-29 16:55:23 · 2547 阅读 · 0 评论 -
K-means原理介绍
1.原理k-means的原理很简单,首先在数据当中随机生成k个聚类中心,后计算数据当中每个样本到这k个聚类中心的距离,并将对应的样本分到距离最小的聚类中心所对应的簇当中,将所有样本归类之后,对于每一个k个簇重新计算每个簇的聚类中心,也就是每个簇中的所有样本的质心,重复上述操作,直到聚类中心不发生改变为止。具体操作如下图所示:上述(a)为样本,(b)中随机生成两个聚类中心,(c)中计算每个样本...原创 2020-04-22 16:48:15 · 3185 阅读 · 0 评论 -
多重共线性的产生及其解决方法(岭回归和Lasso回归)
1.最小二乘法求解多元线性回归多元线性回归表达式:可以写成:我们的目标就是求解w,如何求解w,就要用到损失函数,线性回归的损失函数为:即预测值和真实值之间的差异,我们希望越小越好。我们往往称上述式子为RSS(Residual Sum of Squares 残差平方和)或者SSE(Sum of Sqaured Error,误差平方和),如何求解w就用到最小二乘法:这个时候我们...原创 2020-04-22 11:16:20 · 7208 阅读 · 0 评论 -
逻辑回归(LR)原理讲解
本质:本质为线性回归,在特征到结果的映射当中加了逻辑函数g(z)其中:则:其中即先对特征线性求和(线性回归:h(x)=h1x1+h2x2+…+hnxn=h转置x),再通过g(z)作为假设函数进行预测,g(z)可以将连续值映射到0-1之间,逻辑回归用于处理0/1问题,也就是预测结果属于0或者属于1的二值分类问题,根据属于0或者属于1的0-1的概率的大小判断属于哪一类。也可以写成:...原创 2020-04-21 13:55:14 · 1151 阅读 · 0 评论 -
优化算法
优化算法概念:优化指的是改变x的值以最小化或者最大化某个函数f(x)的任务,通常以最小化f(x)为目标。1:梯度下降法:1.1 梯度的概念梯度实际上就是多变量微分的一般化:如上所示:是一个函数,梯度就是对函数的每个变量进行微分,梯度是一个向量梯度是微积分中一个很重要的概念,下面是梯度的意义a:在单变量的函数中,梯度其实就是函数的微分,代表着函数在某个给定点的切线的斜率b:在多变量...原创 2020-04-20 17:28:32 · 1531 阅读 · 0 评论