机器学习数学基础:概率统计基础知识

文章介绍了概率统计的基础知识,包括常用的统计变量如样本均值和标准差,以及几种常见的概率分布,如均匀分布、正态分布。重点讲解了贝叶斯公式,并通过一个例子展示了如何计算给定条件下的后验概率,例如在产品质量检验中的应用。
摘要由CSDN通过智能技术生成

概率统计基础知识

常用统计变量

样本均值:
在这里插入图片描述
样本方差
在这里插入图片描述
样本标准差
在这里插入图片描述

常见概率分布

均匀分布
在这里插入图片描述
正态分布(高斯分布)
在这里插入图片描述
指数分布
在这里插入图片描述

重要概率公式

条件概率公式:
在这里插入图片描述

全概率公式:

在这里插入图片描述

贝叶斯公式:
在这里插入图片描述
其中:先验概率 P(A),后验概率P(A|B),条件概率P(B|A),B 的先验概率P(B),一般称为标淮化常量;
示例: 一机器在良好状态生产合格产品几率是90%,在故障状态生产合格产品几率是30%,机器良好的概率是75%,若一日第一件产品是合格品,那么此日机器良好的概率是多少。

第一步: 定义事件,A : 机器良好;B : 第一件产品是合格品。确定问题是求解P(A|B)=?

第二步:
P(A)=0.75

P(B|A)=0.9

P(B)=0.90.75+0.30.25=0.75

第三步:P(A|B)=P(B|A)*P(A)/P(B)=0.9

补充公式:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值