TensorFlow中使用Keras

前言

keras集成在tf.keras中。

创建模型

创建一个简单的模型,使用tf.keras.sequential。

model = tf.keras.Sequential()
# 创建一层有64个神经元的网络:
model.add(layers.Dense(64, activation='relu'))
# 添加另一层网络:
model.add(layers.Dense(64, activation='relu'))
# 输出层:
model.add(layers.Dense(10, activation='softmax'))

配置layers

layers包含以下三组重要参数:

activation: 激活函数, ‘relu’, ‘sigmoid’, ‘tanh’.
kernel_initializer 和 bias_initializer: 权重和偏差的初始化器. Glorot uniform是默认的初始化器.一般不用改.
kernel_regularizer 和 bias_regularizer: 权重和偏差的正则化.L1, L2.

以下是配置模型的例子:

# 激活函数为sigmoid:
layers.Dense(64, activation='sigmoid')
# Or:
layers.Dense(64, activation=tf.sigmoid)

# 权重加了L1正则:
layers.Dense(64, kernel_regularizer=tf.keras.regularizers.l1(0.01))

# 给偏差加了L2正则
layers.Dense(64, bias_regularizer=tf.keras.regularizers.l2(0.01))

# 随机正交矩阵初始化器:
layers.Dense(64, kernel_initializer='orthogonal')

# 偏差加了常数初始化器
layers.Dense(64, bias_initializer=tf.keras.initializers.constant(2.0))

训练和评估

配置模型

使用compile配置模型, 主要有以下几组重要参数.

optimizer: 优化器, 主要有:tf.train.AdamOptimizer, tf.train.RMSPropOptimizer, or tf.train.GradientDescentOptimizer.
loss: 损失函数. 主要有:mean square error (mse, 回归), categorical_crossentropy(多分类), and binary_crossentropy(二分类).
metrics: 算法的评估标准, 一般分类用accuracy.

以下是compile的 实例:

# 配置均方误差的回归.
model.compile(optimizer=tf.train.AdamOptimizer(0.01),
              loss='mse',       # mean squared error
              metrics=['mae'])  # mean absolute error

# 配置多分类的模型.
model.compile(optimizer=tf.train.RMSPropOptimizer(0.01),
              loss=tf.keras.losses.categorical_crossentropy,
              metrics=[tf.keras.metrics.categorical_accuracy])

训练

使用model的fit方法进行训练, 主要有以下参数:

epochs: 训练次数
batch_size: 每批数据多少
validation_data: 测试数据

对于小数量级的数据,可以直接把训练数据传入fit.

import numpy as np

data = np.random.random((1000, 32))
labels = random_one_hot_labels((1000, 10))

val_data = np.random.random((100, 32))
val_labels = random_one_hot_labels((100, 10))

model.fit(data, labels, epochs=10, batch_size=32,
          validation_data=(val_data, val_labels))

对于大数量级的训练数据,使用tensorflow中dataset.

# 把数据变成dataset
dataset = tf.data.Dataset.from_tensor_slices((data, labels))
# 指定一批数据是32, 并且可以无限重复
dataset = dataset.batch(32).repeat()

val_dataset = tf.data.Dataset.from_tensor_slices((val_data, val_labels))
val_dataset = val_dataset.batch(32).repeat()

# 别忘了steps_per_epoch, 表示执行完全部数据的steps
model.fit(dataset, epochs=10, steps_per_epoch=30)

model.fit(dataset, epochs=10, steps_per_epoch=30,
          validation_data=val_dataset,
          validation_steps=3)

评估和预测

使用tf.keras.Model.evaluateandtf.keras.Model.predict进行评估和预测. 评估会打印算法的损失和得分.

data = np.random.random((1000, 32))
labels = random_one_hot_labels((1000, 10))
#  普通numpy数据
model.evaluate(data, labels, batch_size=32)
# tensorflow dataset数据
model.evaluate(dataset, steps=30)

预测:

result = model.predict(data, batch_size=32)
print(result.shape)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值