前言
keras集成在tf.keras中。
创建模型
创建一个简单的模型,使用tf.keras.sequential。
model = tf.keras.Sequential()
# 创建一层有64个神经元的网络:
model.add(layers.Dense(64, activation='relu'))
# 添加另一层网络:
model.add(layers.Dense(64, activation='relu'))
# 输出层:
model.add(layers.Dense(10, activation='softmax'))
配置layers
layers包含以下三组重要参数:
activation: 激活函数, ‘relu’, ‘sigmoid’, ‘tanh’.
kernel_initializer 和 bias_initializer: 权重和偏差的初始化器. Glorot uniform是默认的初始化器.一般不用改.
kernel_regularizer 和 bias_regularizer: 权重和偏差的正则化.L1, L2.
以下是配置模型的例子:
# 激活函数为sigmoid:
layers.Dense(64, activation='sigmoid')
# Or:
layers.Dense(64, activation=tf.sigmoid)
# 权重加了L1正则:
layers.Dense(64, kernel_regularizer=tf.keras.regularizers.l1(0.01))
# 给偏差加了L2正则
layers.Dense(64, bias_regularizer=tf.keras.regularizers.l2(0.01))
# 随机正交矩阵初始化器:
layers.Dense(64, kernel_initializer='orthogonal')
# 偏差加了常数初始化器
layers.Dense(64, bias_initializer=tf.keras.initializers.constant(2.0))
训练和评估
配置模型
使用compile配置模型, 主要有以下几组重要参数.
optimizer: 优化器, 主要有:tf.train.AdamOptimizer, tf.train.RMSPropOptimizer, or tf.train.GradientDescentOptimizer.
loss: 损失函数. 主要有:mean square error (mse, 回归), categorical_crossentropy(多分类), and binary_crossentropy(二分类).
metrics: 算法的评估标准, 一般分类用accuracy.
以下是compile的 实例:
# 配置均方误差的回归.
model.compile(optimizer=tf.train.AdamOptimizer(0.01),
loss='mse', # mean squared error
metrics=['mae']) # mean absolute error
# 配置多分类的模型.
model.compile(optimizer=tf.train.RMSPropOptimizer(0.01),
loss=tf.keras.losses.categorical_crossentropy,
metrics=[tf.keras.metrics.categorical_accuracy])
训练
使用model的fit方法进行训练, 主要有以下参数:
epochs: 训练次数
batch_size: 每批数据多少
validation_data: 测试数据
对于小数量级的数据,可以直接把训练数据传入fit.
import numpy as np
data = np.random.random((1000, 32))
labels = random_one_hot_labels((1000, 10))
val_data = np.random.random((100, 32))
val_labels = random_one_hot_labels((100, 10))
model.fit(data, labels, epochs=10, batch_size=32,
validation_data=(val_data, val_labels))
对于大数量级的训练数据,使用tensorflow中dataset.
# 把数据变成dataset
dataset = tf.data.Dataset.from_tensor_slices((data, labels))
# 指定一批数据是32, 并且可以无限重复
dataset = dataset.batch(32).repeat()
val_dataset = tf.data.Dataset.from_tensor_slices((val_data, val_labels))
val_dataset = val_dataset.batch(32).repeat()
# 别忘了steps_per_epoch, 表示执行完全部数据的steps
model.fit(dataset, epochs=10, steps_per_epoch=30)
model.fit(dataset, epochs=10, steps_per_epoch=30,
validation_data=val_dataset,
validation_steps=3)
评估和预测
使用tf.keras.Model.evaluateandtf.keras.Model.predict进行评估和预测. 评估会打印算法的损失和得分.
data = np.random.random((1000, 32))
labels = random_one_hot_labels((1000, 10))
# 普通numpy数据
model.evaluate(data, labels, batch_size=32)
# tensorflow dataset数据
model.evaluate(dataset, steps=30)
预测:
result = model.predict(data, batch_size=32)
print(result.shape)