机器学习:iris数据集

鸢尾花数据集是常用机器学习示例,包含150个样本的花萼长度、花萼宽度、花瓣长度、花瓣宽度四个特征,用于三类鸢尾花的分类。文章展示了使用scikit-learn库加载数据,以及数据的基本操作,包括数据类型、维度和属性名。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、iris数据集简介

iris数据集的中文名是安德森鸢尾花卉数据集,英文全称是Anderson`s Iris data set。iris包含150个样本,对应数据集的每行数据。每行数据包含每个样本的四个特征,所以iris数据集是一个150行4列的二维表。

通俗地说,iris数据集是用来给花做分类的数据集,每个样本包含了花萼长度、花萼宽度、花瓣长度、花瓣宽度四个特征,我们需要建立一个分类器,分类器可以通过样本的四个特征来判断样本属于山鸢尾(setosa)、变色鸢尾(versicolor)、维吉尼亚鸢尾(virginica)这三个品种中的哪一个。
iris常用于监督式学习中分类模型:根据花的四个特征预测鸢尾花卉属于(iris-setosa,iris-versicolour,iris-virginica)中的哪一品种。

二、基本数据操作

# iris数据集加载
from sklearn import datasets
iris = datasets.load_iris()
#展示数据
#print(iris.data)
#展示每列的属性名
print(iris.feature_names)
#展示输出目标结果以及结果的含义
print(iris.target)
print(iris.target_names)
#查看输入和输出数据类型
print(type(iris.data))
print(type(iris.target))
#确认行列维度
print(iris.data.shape)
print(iris.target.shape)

[‘sepal length (cm)’, ‘sepal width (cm)’, ‘petal length (cm)’, ‘petal width (cm)’]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2]
[‘setosa’ ‘versicolor’ ‘virginica’]
<class ‘numpy.ndarray’>
<class ‘numpy.ndarray’>
(150, 4)
(150,)

import pandas  as pd
from sklearn import datasets
iris = datasets.load_iris()
df =pd.DataFrame(data =iris.data,columns = iris.feature_names)
df['class'] =iris.target
df['class'] =df['class'].map({0: iris.target_names[0], 1: iris.target_names[1], 2: iris.target_names[2]})
print(df.head(10))
#print(df.describe())

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值