大数据hudi之集成spark:IDEA编码方式


除了用shell交互式的操作,还可以自己编写Spark程序,打包提交。

环境准备

创建Maven工程,pom文件:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.atguigu.hudi</groupId>
    <artifactId>spark-hudi-demo</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <scala.version>2.12.10</scala.version>
        <scala.binary.version>2.12</scala.binary.version>
        <spark.version>3.2.2</spark.version>
        <hadoop.version>3.1.3</hadoop.version>
        <hudi.version>0.12.0</hudi.version>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
    </properties>

    <dependencies>
        <!-- 依赖Scala语言 -->
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>${scala.version}</version>
        </dependency>
        <!-- Spark Core 依赖 -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_${scala.binary.version}</artifactId>
            <version>${spark.version}</version>
            <scope>provided</scope>
        </dependency>
        <!-- Spark SQL 依赖 -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_${scala.binary.version}</artifactId>
            <version>${spark.version}</version>
            <scope>provided</scope>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-hive_${scala.binary.version}</artifactId>
            <version>${spark.version}</version>
            <scope>provided</scope>
        </dependency>

        <!-- Hadoop Client 依赖 -->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>${hadoop.version}</version>
            <scope>provided</scope>
        </dependency>

        <!-- hudi-spark3.2 -->
        <dependency>
            <groupId>org.apache.hudi</groupId>
            <artifactId>hudi-spark3.2-bundle_${scala.binary.version}</artifactId>
            <version>${hudi.version}</version>
            <scope>provided</scope>
        </dependency>

    </dependencies>

    <build>
        <plugins>
            <!-- assembly打包插件 -->
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.0.0</version>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
                <configuration>
                    <archive>
                        <manifest>
                        </manifest>
                    </archive>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
            </plugin>

            <!--Maven编译scala所需依赖-->
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.2.2</version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

</project>

插入数据

package com.atguigu.hudi.spark

import org.apache.hudi.QuickstartUtils._
import org.apache.spark.SparkConf
import org.apache.spark.sql._
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.config.HoodieWriteConfig._


object InsertDemo {
  def main( args: Array[String] ): Unit = {
    // 创建 SparkSession
    val sparkConf = new SparkConf()
      .setAppName(this.getClass.getSimpleName)
      .setMaster("local[*]")
      .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
    val sparkSession = SparkSession.builder()
      .config(sparkConf)
      .enableHiveSupport()
      .getOrCreate()

    val tableName = "hudi_trips_cow"
    val basePath = "hdfs://hadoop1:8020/tmp/hudi_trips_cow"
    val dataGen = new DataGenerator

    val inserts = convertToStringList(dataGen.generateInserts(10))
    val df = sparkSession.read.json(sparkSession.sparkContext.parallelize(inserts, 2))
    df.write.format("hudi").
      options(getQuickstartWriteConfigs).
      option(PRECOMBINE_FIELD.key(), "ts").
      option(RECORDKEY_FIELD.key(), "uuid").
      option(PARTITIONPATH_FIELD.key(), "partitionpath").
      option(TBL_NAME.key(), tableName).
      mode(Overwrite).
      save(basePath)
  }
}

查询数据

package com.atguigu.hudi.spark

import org.apache.spark.SparkConf
import org.apache.spark.sql._


object QueryDemo {
  def main( args: Array[String] ): Unit = {
    // 创建 SparkSession
    val sparkConf = new SparkConf()
      .setAppName(this.getClass.getSimpleName)
      .setMaster("local[*]")
      .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
    val sparkSession = SparkSession.builder()
      .config(sparkConf)
      .enableHiveSupport()
      .getOrCreate()

    val basePath = "hdfs://hadoop1:8020/tmp/hudi_trips_cow"

    val tripsSnapshotDF = sparkSession.
      read.
      format("hudi").
      load(basePath)

    //    时间旅行查询写法一
    //    sparkSession.read.
    //      format("hudi").
    //      option("as.of.instant", "20210728141108100").
    //      load(basePath)
    //
    //    时间旅行查询写法二
    //    sparkSession.read.
    //      format("hudi").
    //      option("as.of.instant", "2021-07-28 14:11:08.200").
    //      load(basePath)
    //
    //    时间旅行查询写法三:等价于"as.of.instant = 2021-07-28 00:00:00"
    //    sparkSession.read.
    //      format("hudi").
    //      option("as.of.instant", "2021-07-28").
    //      load(basePath)

    tripsSnapshotDF.createOrReplaceTempView("hudi_trips_snapshot")

    sparkSession
      .sql("select fare, begin_lon, begin_lat, ts from  hudi_trips_snapshot where fare > 20.0")
      .show()

  }
}

更新数据

package com.atguigu.hudi.spark

import org.apache.hudi.QuickstartUtils._
import org.apache.spark.SparkConf
import org.apache.spark.sql._
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.config.HoodieWriteConfig._


object UpdateDemo {
  def main( args: Array[String] ): Unit = {
    // 创建 SparkSession
    val sparkConf = new SparkConf()
      .setAppName(this.getClass.getSimpleName)
      .setMaster("local[*]")
      .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
    val sparkSession = SparkSession.builder()
      .config(sparkConf)
      .enableHiveSupport()
      .getOrCreate()

    val tableName = "hudi_trips_cow"
    val basePath = "hdfs://hadoop1:8020/tmp/hudi_trips_cow"

    val dataGen = new DataGenerator
    val updates = convertToStringList(dataGen.generateUpdates(10))
    val df = sparkSession.read.json(sparkSession.sparkContext.parallelize(updates, 2))
    df.write.format("hudi").
      options(getQuickstartWriteConfigs).
      option(PRECOMBINE_FIELD.key(), "ts").
      option(RECORDKEY_FIELD.key(), "uuid").
      option(PARTITIONPATH_FIELD.key(), "partitionpath").
      option(TBL_NAME.key(), tableName).
      mode(Append).
      save(basePath)


//    val tripsSnapshotDF = sparkSession.
//      read.
//      format("hudi").
//      load(basePath)
//    tripsSnapshotDF.createOrReplaceTempView("hudi_trips_snapshot")
//
//    sparkSession
//      .sql("select fare, begin_lon, begin_lat, ts from  hudi_trips_snapshot where fare > 20.0")
//      .show()

  }
}

指定时间点查询

package com.atguigu.hudi.spark

import org.apache.hudi.DataSourceReadOptions._
import org.apache.spark.SparkConf
import org.apache.spark.sql._


object PointInTimeQueryDemo {
  def main( args: Array[String] ): Unit = {
    // 创建 SparkSession
    val sparkConf = new SparkConf()
      .setAppName(this.getClass.getSimpleName)
      .setMaster("local[*]")
      .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
    val sparkSession = SparkSession.builder()
      .config(sparkConf)
      .enableHiveSupport()
      .getOrCreate()

    val basePath = "hdfs://hadoop1:8020/tmp/hudi_trips_cow"

    import sparkSession.implicits._
    val commits = sparkSession.sql("select distinct(_hoodie_commit_time) as commitTime from  hudi_trips_snapshot order by commitTime").map(k => k.getString(0)).take(50)
    val beginTime = "000"
    val endTime = commits(commits.length - 2)

    val tripsIncrementalDF = sparkSession.read.format("hudi").
      option(QUERY_TYPE.key(), QUERY_TYPE_INCREMENTAL_OPT_VAL).
      option(BEGIN_INSTANTTIME.key(), beginTime).
      option(END_INSTANTTIME.key(), endTime).
      load(basePath)

    tripsIncrementalDF.createOrReplaceTempView("hudi_trips_point_in_time")

    sparkSession.
      sql("select `_hoodie_commit_time`, fare, begin_lon, begin_lat, ts from hudi_trips_point_in_time where fare > 20.0").
      show()

  }
}

增量查询

package com.atguigu.hudi.spark

import org.apache.hudi.DataSourceReadOptions._
import org.apache.spark.SparkConf
import org.apache.spark.sql._


object IncrementalQueryDemo {
  def main( args: Array[String] ): Unit = {
    // 创建 SparkSession
    val sparkConf = new SparkConf()
      .setAppName(this.getClass.getSimpleName)
      .setMaster("local[*]")
      .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
    val sparkSession = SparkSession.builder()
      .config(sparkConf)
      .enableHiveSupport()
      .getOrCreate()

    val basePath = "hdfs://hadoop1:8020/tmp/hudi_trips_cow"

    import sparkSession.implicits._
    val commits = sparkSession.sql("select distinct(_hoodie_commit_time) as commitTime from  hudi_trips_snapshot order by commitTime").map(k => k.getString(0)).take(50)
    val beginTime = commits(commits.length - 2)

    val tripsIncrementalDF = sparkSession.read.format("hudi").
      option(QUERY_TYPE.key(), QUERY_TYPE_INCREMENTAL_OPT_VAL).
      option(BEGIN_INSTANTTIME.key(), beginTime).
      load(basePath)

    tripsIncrementalDF.createOrReplaceTempView("hudi_trips_incremental")

    sparkSession.sql("select `_hoodie_commit_time`, fare, begin_lon, begin_lat, ts from  hudi_trips_incremental where fare > 20.0").show()

  }
}

删除数据

package com.atguigu.hudi.spark

import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.QuickstartUtils._
import org.apache.hudi.config.HoodieWriteConfig._
import org.apache.spark.SparkConf
import org.apache.spark.sql.SaveMode._
import org.apache.spark.sql._

import scala.collection.JavaConversions._


object DeleteDemo {
  def main( args: Array[String] ): Unit = {
    // 创建 SparkSession
    val sparkConf = new SparkConf()
      .setAppName(this.getClass.getSimpleName)
      .setMaster("local[*]")
      .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
    val sparkSession = SparkSession.builder()
      .config(sparkConf)
      .enableHiveSupport()
      .getOrCreate()

    val tableName = "hudi_trips_cow"
    val basePath = "hdfs://hadoop1:8020/tmp/hudi_trips_cow"
    val dataGen = new DataGenerator

    sparkSession.
      read.
      format("hudi").
      load(basePath).
      createOrReplaceTempView("hudi_trips_snapshot")

    sparkSession.sql("select uuid, partitionpath from hudi_trips_snapshot").count()

    val ds = sparkSession.sql("select uuid, partitionpath from hudi_trips_snapshot").limit(2)

    val deletes = dataGen.generateDeletes(ds.collectAsList())
    val df = sparkSession.read.json(sparkSession.sparkContext.parallelize(deletes, 2))

    df.write.format("hudi").
      options(getQuickstartWriteConfigs).
      option(OPERATION.key(),"delete").
      option(PRECOMBINE_FIELD.key(), "ts").
      option(RECORDKEY_FIELD.key(), "uuid").
      option(PARTITIONPATH_FIELD.key(), "partitionpath").
      option(TBL_NAME.key(), tableName).
      mode(Append).
      save(basePath)

    val roAfterDeleteViewDF = sparkSession.
      read.
      format("hudi").
      load(basePath)

    roAfterDeleteViewDF.createOrReplaceTempView("hudi_trips_snapshot")

    // 返回的总行数应该比原来少2行
    sparkSession.sql("select uuid, partitionpath from hudi_trips_snapshot").count()

  }
}

覆盖数据

package com.atguigu.hudi.spark

import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.QuickstartUtils._
import org.apache.hudi.config.HoodieWriteConfig._
import org.apache.spark.SparkConf
import org.apache.spark.sql.SaveMode._
import org.apache.spark.sql._

import scala.collection.JavaConversions._


object InsertOverwriteDemo {
  def main( args: Array[String] ): Unit = {
    // 创建 SparkSession
    val sparkConf = new SparkConf()
      .setAppName(this.getClass.getSimpleName)
      .setMaster("local[*]")
      .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
    val sparkSession = SparkSession.builder()
      .config(sparkConf)
      .enableHiveSupport()
      .getOrCreate()

    val tableName = "hudi_trips_cow"
    val basePath = "hdfs://hadoop1:8020/tmp/hudi_trips_cow"
    val dataGen = new DataGenerator

    sparkSession.
      read.format("hudi").
      load(basePath).
      select("uuid","partitionpath").
      sort("partitionpath","uuid").
      show(100, false)


    val inserts = convertToStringList(dataGen.generateInserts(10))
    val df = sparkSession.read.json(sparkSession.sparkContext.parallelize(inserts, 2)).
      filter("partitionpath = 'americas/united_states/san_francisco'")

    df.write.format("hudi").
      options(getQuickstartWriteConfigs).
      option(OPERATION.key(),"insert_overwrite").
      option(PRECOMBINE_FIELD.key(), "ts").
      option(RECORDKEY_FIELD.key(), "uuid").
      option(PARTITIONPATH_FIELD.key(), "partitionpath").
      option(TBL_NAME.key(), tableName).
      mode(Append).
      save(basePath)

    sparkSession.
      read.format("hudi").
      load(basePath).
      select("uuid","partitionpath").
      sort("partitionpath","uuid").
      show(100, false)
  }
}

提交运行

将代码打成jar包,上传到目录myjars,执行提交命令(QueryDemo为例):

spark-submit \
--class com.atguigu.hudi.spark.QueryDemo \
/opt/module/spark-3.2.2/myjars/spark-hudi-demo-1.0-SNAPSHOT-jar-with-dependencies.jar
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值