SVM模型(理论知识1)

前言

支持向量机(support vector machine,SVM)是有监督学习中最有影响力的机器学习算法之一,典型应用是解决手写字符识别问题。

支持向量机是一种二分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解。

支持向量机的学习算法是求解凸二次规划的最优化算法。基础的SVM算法是一个二分类算法,至于多分类任务,可以通过多次使用SVM进行解决。

SVM模型介绍

超平面

在这里插入图片描述
超平面的理解:在一维空间中,如需将数据切分为两段,只需要一个点即可;在二维空间中,对于线性可分的样本点,将其切分为两类,只需一条直线即可;在三维空间中,将样本点切分开来,就需要一个平面。

距离计算

在这里插入图片描述
点到线的距离:
d = ∣ A x 0 + B y 0 + C ∣ A 2 + B 2 d=\frac{|A_{x0}+B_{y0}+C|}{\sqrt{A^2+B^2}} d=A2+B2 Ax0+By0+C
平行线间的距离:
d = ∣ C 1 − C 2 ∣ A 2 + B 2 d=\frac{|C_1-C_2|}{\sqrt{A^2+B^2}} d=A2+B2 C1C2

思想介绍

在这里插入图片描述

图中绘制了两条分割直线,利用这两条直线,可以方便地将样本点所属的类别判断出来。虽然从直观来看这两条分割线都没有问题,但是哪一条直线的分类效果更佳呢(训练样本点的分类效果一致,并不代表测试样本点的分类效果也一样)?甚至于在直线l1和l2之间还存在无数多个分割直线,那么在这么多的分割线中是否存在一条最优的“超平面”呢?

在这里插入图片描述
假设直线 l i l_i li l 1 l_1 l1 l 2 l_2 l2之间的某条直线(分割面),为了能够寻找到最优的分割面 l i l_i li,需要做三件事,首先计算两个类别中的样本点到直线 l i l_i li的距离,然后从两组距离中各挑选出一个最短的(如图中所示的距离 d 1 d_1 d1 d 2 d_2 d2),继续比较 d 1 d_1 d1 d 2 d_2 d2,再选出最短的距离(如图中的 d 1 d_1 d1),并以该距离构造“分割带”,(如图中经平移后的两条虚线);最后利用无穷多个分割直线 l i l_i li,构造无穷多个分割带,并从这些分割带中挑选出带宽最大的 l i l_i li

分隔带
在这里插入图片描述
“分割带”代表了模型划分样本点的能力或可信度,“分割带”越宽,说明模型能够将样本点划分得越清晰,进而保证模型泛化能力越强,分类的可信度越高;反之,“分割带”越窄,说明模型的准确率越容易受到异常点的影响,进而理解为模型的预测能力越弱,分类的可信度越低。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值