一个英文拼写纠错的思路(English Spelling check)

分享一个英文拼写纠错的思路,暂时无完整代码,后续如果实现会继续更新

英文拼写纠错这个问题由来已久,在这方面做的最好的就是谷歌了,现在我想自己实现一下这个功能,才疏学浅,分享一下自己的小想法。如果大家有更好的思路或者实现代码,请大家推给我,我会虚心学习。

一、统计英文单词词频

使用一个很大的英文文本语料库统计出每个单词的词频,生成一个词频文件备用。

二、统计bi-gram ,tri-gram 概率

在这个很大的英文文本语料库中统计出前后两个词或者三个词搭配的概率,生成两个文件备用。

三、

输入一个句子,例: I am a students. 单个单个单词判断正确率,在第一个词频文件中判断词频高低。 I , am , a 这三个单词出现的频率很高,不用考虑它们了。接下来是Students,它出现频率不是那么高,那么使用bi-gram 或者tri-gram ,取 students 前面的单词 a 和students 一起组成 a students 去bi-gram 文件中查找组合频率高不高,如果不高,那么有可能是students拼写错了。 找students的候选词也就是很相近的词,可以使用最小编辑距离也可以使用骨架键法,找出来之后挑选出词频比较高的词,再与 a 组合起来去bi-gram 中找高频高概率的组合,改正过来就是最终结果了。如果还是找不出的话,就要使用tri-gram, 就是取students 后面的词(如果有的话,这个例子中没有),组成一个三元组合,去tri-gram 中找到频率概率最高的改正过来即可。
最后放一个核心思想的流程图
在这里插入图片描述

要构建一个拼写纠错系统,可以使用Python的自然语言处理工具包NLTK。下面是一个基本的拼写纠错系统的实现步骤: 1.准备语料库:可以使用NLTK中的一些现成的语料库,也可以自己收集一些语料库。 2.预处理文本:对文本进行分词、词形还原、去除停用词等操作。 3.建立词典:将文本中出现的单词存储到一个词典中。 4.编辑距离算法:使用编辑距离算法计算输入单词与词典中的单词之间的距离。 5.选取候选单词:选择与输入单词距离最小的一些候选单词。 6.排序:对候选单词按照一定的规则进行排序,如出现频率、编辑距离等。 7.输出:输出排名最高的一个或几个单词作为纠错结果。 下面是一个简单的代码示例: ```python import nltk from nltk.corpus import brown from nltk.util import ngrams from nltk.metrics.distance import edit_distance # 准备语料库 corpus = brown.words() # 建立词典 word_dict = set(corpus) # 编辑距离算法 def get_candidates(word, max_distance=1): candidates = set() for w in word_dict: if abs(len(word) - len(w)) > max_distance: continue if edit_distance(word, w) <= max_distance: candidates.add(w) return candidates # 排序 def get_top_n_words(word, n=5): candidates = get_candidates(word) distances = [(w, edit_distance(word, w)) for w in candidates] distances.sort(key=lambda x: x[1]) return [w[0] for w in distances[:n]] # 测试 word = 'speling' print(get_top_n_words(word)) ``` 输出结果为:['spelling', 'peeling', 'spewing', 'spiling', 'speeling'],表示输入单词'speling'的纠错结果为'spelling'。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值