# Pytorch+CNN 识别自己手写的数字

## 第一步：训练模型，保存参数

import torch
from torch import nn,optim
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import os

batch_size = 200    # 分批训练数据、每批数据量
learning_rate = 1e-2    # 学习率
num_epoches = 20       # 训练次数

# Mnist digits dataset
if not(os.path.exists('./mnist/')) or not os.listdir('./mnist/'):
# not mnist dir or mnist is empyt dir

train_dataset = datasets.MNIST(
root = './mnist',
transform = transforms.ToTensor(),
)
test_dataset = datasets.MNIST(
root='./mnist',
transform=transforms.ToTensor(),
)

#该接口主要用来将自定义的数据读取接口的输出或者PyTorch已有的数据读取接口的输入
# 按照batch size封装成Tensor，后续只需要再包装成Variable即可作为模型的输入
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)    #shuffle 是否打乱加载数据

class CNN(nn.Module):
def __init__(self,in_dim,n_class):
super(CNN,self).__init__()
self.conv = nn.Sequential(
# input shape(1*28*28),(28+1*2-3)/1+1=28 卷积后输出（6*28*28）
# 输出图像大小计算公式:(n*n像素的图）(n+2p-k)/s+1
nn.ReLU(True),        # 激活函数
nn.MaxPool2d(2,2),    # 28/2=14 池化后（6*14*14）
nn.Conv2d(6,16,5,stride=1,padding=0),  # (14-5)/1+1=10 卷积后（16*10*10）
nn.ReLU(True),
nn.MaxPool2d(2,2)    #池化后（16*5*5）=400，the input of full connection
)
self.fc = nn.Sequential(   #full connection layers.
nn.Linear(400,120),
nn.Linear(120,84),
nn.Linear(84,n_class)
)

def forward(self, x):
out = self.conv(x)                  #out shape(batch,16,5,5)
out = out.view(out.size(0), -1)     #out shape(batch,400)
out = self.fc(out)                  #out shape(batch,10)
return out

cnn = CNN(1, 10)
print(cnn)

if torch.cuda.is_available():       #是否可用GPU计算
cnn = cnn.cuda()           #转换成可用GPU计算的模型

criterion = nn.CrossEntropyLoss()       #多分类用的交叉熵损失函数
optimizer = optim.Adam(cnn.parameters(), lr=learning_rate)
#常用优化方法有
#1.Stochastic Gradient Descent (SGD)
#2.Momentum
#4.RMSProp

for epoch in range(num_epoches):
print('epoch{}'.format(epoch+1))
print('*'*10)
running_loss = 0.0
running_acc = 0.0
#训练
for i,data in enumerate(train_loader,1):
img,label = data
#  判断是否可以使用GPU，若可以则将数据转化为GPU可以处理的格式。
if torch.cuda.is_available():
img = Variable(img).cuda()
label = Variable(label).cuda()
else:
img = Variable(img)
label = Variable(label)
out = cnn(img)
loss = criterion(out,label)
running_loss += loss.item() * label.size(0)
_, pred = torch.max(out,1)
num_correct = (pred == label).sum()
accuracy = (pred == label).float().mean()
running_acc += num_correct.item()

loss.backward()
optimizer.step()

print('Finish {} epoch,Loss:{:.6f},Acc:{:.6f}'.format(
epoch+1,running_loss/(len(train_dataset)),running_acc/len(train_dataset)
))

#测试
cnn.eval()     #eval()时，模型会自动把BN和DropOut固定住，不会取平均，而是用训练好的值
eval_loss = 0
eval_acc = 0
for i, data in enumerate(test_loader, 1):
img, label = data
#判断是否可以使用GPU，若可以则将数据转化为GPU可以处理的格式。
if torch.cuda.is_available():
img = Variable(img).cuda()
label = Variable(label).cuda()
else:
img = Variable(img)
label = Variable(label)

out = cnn(img)
loss = criterion(out,label)
eval_loss += loss.item() * label.size(0)
_, pred = torch.max(out, 1)
num_correct = (pred == label).sum()
accuracy = (pred == label).float().mean()
eval_acc += num_correct.item()

print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(
test_dataset)), eval_acc/len(test_dataset)))

# Save the Trained Model
ckpt_dir = 'F:/'
save_path = os.path.join(ckpt_dir, 'CNN_model_weight2.pth.tar')
torch.save({'state_dict': cnn.state_dict()}, save_path)


## 第二步：加载参数，识别自己的图片

import torch
import numpy as np
from PIL import Image
#  加载参数
#  要识别的图片
input_image = './test_image/b_7.jpg'

im = Image.open(input_image).resize((28, 28))     #取图片数据
im = im.convert('L')      #灰度图
im_data = np.array(im)

im_data = torch.from_numpy(im_data).float()

im_data = im_data.view(1, 1, 28, 28)
out = cnn(im_data)
_, pred = torch.max(out, 1)

print('预测为:数字{}。'.format(pred))


• 点赞 4
• 评论 12
• 分享
x

海报分享

扫一扫，分享海报

• 收藏 21
• 手机看

分享到微信朋友圈

x

扫一扫，手机阅读

• 打赏

打赏

weixin_43597287

你的鼓励将是我创作的最大动力

C币 余额
2C币 4C币 6C币 10C币 20C币 50C币
• 一键三连

点赞Mark关注该博主, 随时了解TA的最新博文
04-17 1037

01-09 402
03-15 720
06-27
04-08
11-19
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客