【动态规划】攀登宝塔

本文介绍了一种使用动态规划解决爬楼问题的方法,通过定义状态f[用法力][层数]和f[不用法力][层数],并给出状态转移方程,实现了对最小消耗的计算。代码中使用了C++实现,通过读取输入的楼层数和每层的消耗,最终输出达到顶层的最小消耗。
摘要由CSDN通过智能技术生成

http://icpc.upc.edu.cn/problem.php?cid=1406&pid=6

f[用法力][层数]=min(f[不用法力?][层数-1],f[不用法力][层数-2])
f[不用法力][层数]=min(f[用法力][层数-1],f[不用法力][层数-1])

#include<cstdio>
#include<iostream>
using namespace std;
int a[100000],n,i,f[3][1000000];
int main() {
	scanf("%d",&n);
	for (i=1; i<=n; i++) {
		scanf("%d",&a[i]);
	}
	for (i=1; i<=n; i++) {
		f[1][i]=min(f[2][i-1],f[1][i-1])+a[i];
		f[2][i]=min(f[1][i-1],f[1][i-2]);
	}
	printf("%d\n",min(f[1][n],f[2][n]));
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值