Permutations

回溯法;排列类问题

//回溯法解决排列类问题
#include <iostream>
#include <vector>

using namespace std;

/*
问题描述:给定一个整型数组,其中每一个元素都各不相同,返回这些元素所有排列的可能。
思考:可将问题抽象为树形结构问题,于是可进一步采用回溯法解决;
      函数表达。Perms(nums[0...n-1])={取出一个数字}+Perms(nums[{0...n-1-该数字}])
*/

class Solution{

private:
    vector<int> res;
    vector<bool> used;//空间换时间,判断当前考虑元素是否已经在排列之中

    //p中保存有Index个元素的排列;
    //从nums中考虑,向排列中添加第index+1个元素,并保存在p中
    void generatePermutation(const vector<int>& nums,int index,vector<int> &p){
          if(index==nums.size()){//随着递归深入p中元素增多,直到递归出口,获得了一个排列
                res.push_back(p);
                return ;
          }

          for(int i=0;i<nums.size();i++){
                if(!used[i]){
                      p.push_back(nums[i]);
                      used[i]=true;
                      generatePermutation(nums,index+1,p);
                      //回溯过程,剔除当前考虑的元素,并标志为未使用
                      p.pop_back(nums[i]);
                      used[i]=false;
                }
          }
          return;
    }

public:
    vector<vector<int>> premute(vector<int> &nums){

          res.clear();
          if(nums.size()==0){
                return res;
          }
          used=vector<bool>(nums.size(),false);
          vector<int> p;
          generatePermutation(nums,0,p);

          return res;
    }

};

int main(){

}
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值