银行家算法

银行家算法是 Dijkstra 提出的一种避免死锁的机制,通过设置数据结构来跟踪系统资源的分配。当进程请求资源时,算法会检查分配后系统是否仍处于安全状态。安全算法寻找是否存在一种顺序,使每个进程都能完成执行,从而确保系统的安全性。通过实例分析,展示了在不同请求下如何应用银行家算法来判断资源分配的可行性。
摘要由CSDN通过智能技术生成

利用银行家算法避免死锁

最有代表性的避免死锁的算法,是 Dijkstra 的银行家算法。这是由于该算法能用于银行系统现金贷款的发放而得名的。为实现银行家算法,系统中必须设置若干数据结构。

1.银行家算法中的数据结构

(1) 可利用资源向量 Available。这是一个含有 m 个元素的数组,其中的每一个元素代表一类可利用的资源数目,其初始值是系统中所配置的该类全部可用资源的数目,其数值随该类资源的分配和回收而动态地改变。如果 Available[j]=K,则表示系统中现有 R j类资源K 个。

(2) 最大需求矩阵 Max。这是一个 n×m 的矩阵,它定义了系统中 n 个进程中的每一个进程对 m 类资源的最大需求。如果 Max[i,j]=K,则表示进程 i 需要 Rj 类资源的最大数目为 K。

(3) 分配矩阵 Allocation。这也是一个 n×m 的矩阵,它定义了系统中每一类资源当前已分配给每一进程的资源数。如果 Allocation[i,j]=K,则表示进程 i 当前已分得 R j类资源的数目为 K。

(4) 需求矩阵 Need。这也是一个 n×m 的矩阵,用以表示每一个进程尚需的各类资源数。如果 Need[i,j]=K,则表示进程 i 还需要 R j类资源 K 个,方能完成其任务。上述三个矩阵间存在下述关系:

Need[i, j]=Max[i, j]-Allocation[i, j]

2.银行家算法

设 Request i是进程 Pi的请求向量,如果 Request i[j]=K,表示进程 P i需要 K 个 R j类型的资源。当 P i发出资源请求后,系统按下述步骤进行检查:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值