初识神经网络(MNIST)

本文介绍了使用Keras加载MNIST数据集,构建包含两个全连接层的神经网络,通过编译设置损失函数、优化器和监控指标,进行手写数字识别的初步实践。
摘要由CSDN通过智能技术生成

1 加载Keras中的MNIST数据集

from keras.datasets import mnist
(train_images,train_labels),(test_images,test_labels)=mnist.load_data()
train_images.shape
(60000, 28, 28)
train_labels.shape
(60000,)
train_labels
array([5, 0, 4, ..., 5, 6, 8], dtype=uint8)

2 网络架构

  • 将训练数据输入到神经网络中;
  • 网络学习将图像和标签关联在一起;
  • 网络对test_image进行预测,验证这些预测是否与test_labels中的标签是否匹配
from keras import layers
from keras import</
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值