二维相位解包裹理论算法和软件【全文翻译-质量引导路径跟踪(4.3)】

本文介绍了质量引导路径跟踪算法在解决相位解包裹问题上的方法,该算法通过高质量像素引导整合路径,避免低质量像素,以此减少错误。与戈尔茨坦算法相比,该算法不识别残差,而是依赖于质量图,先解包高质量像素,适用于有可靠质量图的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

4.3 质量引导路径跟踪

在上一节中,我们研究了戈尔茨坦算法中的最近残差法将分支切口置于 "错误 "位置的例子。在本节中,我们将从一个完全不同的角度来探讨相位解包问题,提出以下问题: 在相位数据中,除了残差之外,是否还有其他信息可以用来指导整合路径?

将这些质量图与相位和残差数据进行比较可以发现,被破坏的相位(和残差)往往具有较低的质量值。这表明,相位解包的方法是沿着高质量像素的整合路径,避开低质量像素。这种方法不会识别残差,也不会生成分支切割。相反,它依赖于一个假设,即高质量的地图将引导整合路径,而不会包围任何不平衡的残差。这种假设也许有风险,但在实践中却出奇地可靠

第一个采用质量指标来指导解包的研究者似乎是 Bone [10]。他计算了相位数据的二阶差(即二阶偏导数),然后应用一个阈值来生成待解包像素的 "质量掩膜"。只有那些二次差值不超过阈值的像素才会被解包,而且解包顺序不限。Xu 和 Ai [11]在处理光学干涉测量数据时,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

V建模忠哥V

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值