4.3 质量引导路径跟踪
在上一节中,我们研究了戈尔茨坦算法中的最近残差法将分支切口置于 "错误 "位置的例子。在本节中,我们将从一个完全不同的角度来探讨相位解包问题,提出以下问题: 在相位数据中,除了残差之外,是否还有其他信息可以用来指导整合路径?
将这些质量图与相位和残差数据进行比较可以发现,被破坏的相位(和残差)往往具有较低的质量值。这表明,相位解包的方法是沿着高质量像素的整合路径,避开低质量像素。这种方法不会识别残差,也不会生成分支切割。相反,它依赖于一个假设,即高质量的地图将引导整合路径,而不会包围任何不平衡的残差。这种假设也许有风险,但在实践中却出奇地可靠。
第一个采用质量指标来指导解包的研究者似乎是 Bone [10]。他计算了相位数据的二阶差(即二阶偏导数),然后应用一个阈值来生成待解包像素的 "质量掩膜"。只有那些二次差值不超过阈值的像素才会被解包,而且解包顺序不限。Xu 和 Ai [11]在处理光学干涉测量数据时,