一文看懂生成对抗网络 - GANs?(基本原理+10种典型算法+13种应用)

本文详细介绍了生成对抗网络GANs的设计初衷、基本原理,包括大白话和非大白话版本的解释,以及10种典型GANs算法和13种广泛应用,如数据集生成、图像转换、文字到图像合成等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文首发自 easyAI - 人工智能知识库
原文地址:《一文看懂生成对抗网络 - GANs?(基本原理+10种典型算法+13种应用)

一文看懂生成对抗网络GANs

生成对抗网络 - GANs 是最近2年很热门的一种无监督算法,他能生成出非常逼真的照片,图像甚至视频。我们手机里的照片处理软件中就会使用到它。

本文将详细介绍生成对抗网络 - GANs 的设计初衷、基本原理、10种典型算法和13种实际应用。

GANs的设计初衷

一句话来概括 GANs 的设计动机就是——自动化。

人工提取特征——自动提取特征

我们在《一文看懂深度学习(概念+优缺点+典型算法)》中讲过,深度学习最特别最厉害的地方就是能够自己学习特征提取。

传统机器学习和深度学习的核心区别

机器的超强算力可以解决很多人工无法解决的问题。自动化后,学习能力更强,适应性也更强。

人工判断生成结果的好坏——自动判断和优化

我们在《监督学习》中讲过,训练集需要大量的人工标注数据,这个过程是成本很高且效率很低的。而人工判断生成结果的好坏也是如此,有成本高和效率低的问题。

而 GANs 能自动完成这个过程,且不断的优化,这是一种效率非常高,且成本很低的方式。GANs是如何实现自动化的呢?下面我们讲解一下他的原理。

生成对抗网络 GANs 的基本原理

大白话版本

知乎上有一个很不错的解释,大家应该都能理解:

假设一个城市治安混乱,很快,这个城市里就会出现无数的小偷。在这些小偷中,有的可能是盗窃高手,有的可能毫无技术可言。假如这个城市开始整饬其治安,突然开展一场打击犯罪的「运动」,警察们开始恢复城市中的巡逻,很快,一批「学艺不精」的小偷就被捉住了。之所以捉住的是那些没有技术含量的小偷,是因为警察们的技术也不行了,在捉住一批低端小偷后,城市的治安水平变得怎样倒还不好说,但很明显,城市里小偷们的平均水平已经大大提高了。

警察严打导致小偷水平提升

警察们开始继续训练自己的破案技术,开始抓住那些越来越狡猾的小偷。随着这些职业惯犯们的落网,警察们也练就了特别的本事,他们能很快能从一群人中发现可疑人员,于是上前盘查,并最终逮捕嫌犯;小偷们的日子也不好过了,因为警察们的水平大大提高,如果还想以前那样表现得鬼鬼祟祟,那么很快就会被警察捉住。

经常提升技能,更多小偷被抓

为了避免被捕,小偷们努力表

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值