题目描述
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
比如n=3时,2*3的矩形块有3种覆盖方法:
示例1
输入
4返回值
5
解题思路
逆向分析
2*n的矩形,一直填充2*1的矩形,2*1可能横着也可能竖着,那么第n个地方可能是横着的f(n-2),也可能是竖着的f(n-1)
即f(n)=f(n-1)+f(n-2)当到了最后,f(1)=1,f(2)=2
(和JZ8的青蛙跳台阶一样的思路)
代码
function rectCover(number)
{
// write code here
if(number<=0){
return 0;
}
if(number==1){
return 1;
}
if(number==2){
return 2;
}
return rectCover(number-1)+rectCover(number-2);
}
运行环境:JavaScript (V8 6.0.0)
运行时间:744ms
占用内存:5460KB