由《天才基本法》第三集中的一个问题引发的思考

文章从《天才基本法》中的一道数学问题出发,探讨了如何在工人工作n天时,用最少切割次数将金条分割以满足每日支付。通过对问题的深入分析和证明,得出分割次数最少的策略与二进制表示相关,即金条的分割次数等于所需二进制位数减一。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

由《天才基本法》第三集中的一个问题引发的思考

问题引入

小学生林朝夕和党爱民备战奥数夏令营,做练习题时遇到以下问题:
问题:工人为你工作七天的总报酬是一根金条,你每天晚上必须为工人结一次账,不能赊账也不能多付,请问金条最少切割多少次才能实现。
聪明的林朝夕同学快速给出了答案:两次,策略如下:将金条按照1:2:4的比例分成3分,第一天给1,第二天给2收回1,第三天再给1,第四天给4收回1和2,第五天再给1,第6天给2收回1,第七天给1。
在这里插入图片描述
思考:如果将本问题中的7天改成n天,其他条件不变呢?

问题描述

问题:工人为你工作n天的总报酬是一根金条,你每天晚上必须为工人结一次账,不能赊账也不能多付,请问金条最少切割多少次才能实现。
分析:假设将金条切割成k份是一种可行切割,对于可行切割的定义如下:
定义:若切割k次以后每一份的占比分别为 a 0 , a 1 , . . . a k a_0,a_1,...a_k a0,a1,...ak, a i ∈ N ∗ a n d 1 ≤ a i ≤ n a_i\in N* and\quad 1\le a_i \le n aiNand1ain,且 ∑ 0 k a i = n \sum_0^k a_i=n 0kai=n, 若对任意在区间[1,n]之间的正整数 m m m都存在 x 0 ≤ i ≤ k ∈ { 0 , 1 } x_{0\le i \le k} \in \{0, 1\} x0ik{ 0,1},s.t. m = ∑ 0 k x i a i m =\sum_0^k x_ia_i m=0kxiai,则成该分隔为一种k阶可行分隔。
可行分割存在以下性质:
性质1:若 a 0 , a 1 , . . . a k a_0,a_1,...a_k a0,a1,...ak是n的一种k阶可行分割,当 1 ≤ a k + 1 ≤ n + 1 1\le a_{k+1} \le n+1 1a

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值