目标检测
向日的葵花子
这个作者很懒,什么都没留下…
展开
-
NNIE量化算法
神经网络的端侧部署与量化技术神经网络在端侧的部署由于内存、带宽、计算能力的限制,相比服务器的模型,所占的空间和计算资源小,通常使用模型量化技术来优化。模型量化将模型的参数离散化,原本32bit的浮点数被映射到8bit的整数上,模型的大小压缩4倍左右;将计算层的输入进行离散化,原本32bit浮点数的乘加操作变为8bit的整数乘加操作,减少了模型推理的计算量,在cpu上能够有2到3倍的速度提升,在DSP上能够有10倍左右的速度提升。 FP32浮点数能够表示的数值范围为 ,INT8能表示的数值原创 2020-09-24 08:49:43 · 2920 阅读 · 1 评论 -
ROI Pooling层简单理解
原文链接:https://blog.deepsense.ai/region-of-interest-pooling-explained/目标检测typical architecture 通常可以分为两个阶段:(1)region proposal:给定一张输入image找出objects可能存在的所有位置。这一阶段的输出应该是一系列object可能位置的bounding box。这些通常称之为region proposals或者 regions of interest(ROI)。(2)final cl原创 2020-09-13 12:49:42 · 474 阅读 · 0 评论 -
【Faster R-CNN】3. Faster RCNN代码解析第二弹
1. 前言回顾一下上节推文的内容,我们将Faster RCNN的数据预处理以及实现细节弄清楚了,并将其总结为了下图:Faster RCNN预处理流程图,made by BBuf这一节,我们将重点讲讲Faster RCNN中的RPN即候选框生成网络和ROI Head的细节。2. 原理介绍&代码详解还是先回忆一下上节讲到的Faster RCNN整体结构,如下所示:Faster RCNN整体结构,来自知乎陈云大佬可以看到原始图片首先会经过一个特征提取器Extrator这里是VGG16,在原始论文中作者使用原创 2020-09-13 09:36:57 · 410 阅读 · 0 评论 -
Faster_RCNN的读取和数据处理
最近开始学习目标检测faster rcnn,首先看了很多博客讲解原理,然后从github上下载tensorflow版本的代码,代码太长看了好几天没明白,后来看到了chenyuntc的 simple-faster-rcnn-pytorch,还有作者写这份代码的心得,让我感觉很佩服,自认为目前阶段不能手写如此复杂的代码。作者是从tf版本的改为pytorch版的,我在学习的过程中也查阅了很多其他人写的讲解代码的博客,得到了很大的帮助,所以也打算把自己一些粗浅的理解记录下来,一是记录下自己的菜鸟学习之路,方便自己过原创 2020-09-12 10:14:25 · 1756 阅读 · 0 评论 -
Fast-RCNN论文总结
摘要:本文提出了一种可用于目标检测的基于区域的快速卷积神经网络方法,Fast-RCNN 是对以前使用深度卷积网络进行目标检测工作的一种有效增强!Fast-RCNN有几处牛逼的创新点,可以在大大减少训练和测试时间的同时增加训练精确度,Fast-RCNN训练非常深VGG16的网络,速度比RCNN快9倍,测试速度更是达到了惊人的213倍,在PASCAL VOC2012上实现了比较高的准确度!和SPPnet做比较,我们的Fast-RCNN训练速度达3倍,测试速度达10倍!简直是伟大的突破!最近,深度卷积神经网络原创 2020-09-12 10:02:22 · 999 阅读 · 0 评论