Hadoop之MapReduce

概述

​ MapReduce 是一个分布式运算程序的编程框架,是用户开发“基于 Hadoop 的数据分析应用”的核心框架。​ MapReduce 核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一个 Hadoop 集群上。

MapReduce:自己处理业务相关代码 + 自身的默认代码

MapReduce优缺点

优点:

​ 1)MapReduce 易于编程。

​ 用户只关心业务逻辑。实现框架的接口。

​ 它简单的实现一些接口,就可以完成一个分布式程序,这个分布式程序可以分布到大量廉价的 PC 机器上运行。也就是说你写一个分布式程序,跟写一个简单的串行程序是一模一样的。就是因为这个特点使得 MapReduce 编程变得非常流行。​ 2)良好的扩展性

​ 可以动态增加服务器,解决计算资源不够的问题。

​ 当你的计算资源不能得到满足的时候,你可以通过简单的增加机器来扩展它的计算能力。​ 3)高容错性

​ 任何一台机器挂掉,可以将任务转移到其他节点。

​ MapReduce 设计的初衷就是使程序能够部署在廉价的 PC 机器上,这就要求它具有很高的容错性。比如其中一台机器挂了,它可以把上面的计算任务转移到另外一个节点上运行,不至于这个任务运行失败,而且这个过程不需要人工参与,而完全是由 Hadoop 内部完成的。​ 4)适合 PB 级以上海量数据的离线处理​ 可以实现上千台服务器集群并发工作,提供数据处理能力。

缺点:

​ 1)不擅长实时计算

​ MapReduce 无法像 MySQL 一样,在毫秒或者秒级内返回结果。​ 2)不擅长流式计算​ 流式计算的输入数据是动态的,而 MapReduce 的输入数据集是静态的,不能动态变化。这是因为 MapReduce 自身的设计特点决定了数据源必须是静态的。​ 3)不擅长 DAG(有向无环图)计算​ 多个应用程序存在依赖关系,后一个应用程序的输入为前一个的输出。在这种情况下,MapReduce 并不是不能做,而是使用后,每个 MapReduce 作业的输出结果都会写入到磁盘,会造成大量的磁盘 IO,导致性能非常的低下。

MapReduce核心思想

(1)分布式的运算程序往往需要分成至少 2 个阶段。【Map阶段和Reduce阶段】(2)第一个阶段的 MapTask 并发实例,完全并行运行,互不相干。(3)第二个阶段的 ReduceTask 并发实例互不相干,但是他们的数据依赖于上一个阶段的所有 MapTask 并发实例的输出。(4)MapReduce 编程模型只能包含一个 Map 阶段和一个 Reduce 阶段,如果用户的业务逻辑非常复杂,那就只能多个 MapReduce 程序,串行运行。

MapReduce 进程

一个完整的 MapReduce 程序在分布式运行时有三类实例进程:

(1)MrAppMaster:负责整个程序的过程调度及状态协调。
(2)MapTask:负责 Map 阶段的整个数据处理流程。
(3)ReduceTask:负责 Reduce 阶段的整个数据处理流程。

官方 WordCount 源码

​ 采用反编译工具反编译源码,发现 WordCount 案例有 Map 类、Reduce 类和驱动类。且数据的类型是 Hadoop 自身封装的序列化类型。

常用数据序列化类型

Java 类型               Hadoop Writable 类型
Boolean                 BooleanWritable
Byte                    ByteWritable
Int                     IntWritable
Float                   FloatWritable
Long                    LongWritable
Double                  DoubleWritable
String                  Text
Map                     MapWritable
Array                   ArrayWritable
Null                    NullWritable

MapReduce编程规范

用户编写的程序分为三个部分:Mapper、Reducer、Driver。

1.Mapper阶段
(1)用户自定义的Mapper要继承自己的父类
(2)Mapper的输入数据是KV对(键值对)的形式(KV的类型可自定义)
(3)Mapper中的业务逻辑写在map()方法中
(4)Mapper的输出数据是KV对(键值对)的形式(KV的类型可自定义)
(5)map()方法(MapTask进程)对每一个<K,V>调用一次
​
2.Reducer阶段
(1)用户自定义的Reducer要继承自己的父类
(2)Reducer的输入数据类型对应Mapper的输出数据类型,也是KV
(3)Reducer的业务逻辑写在reduce()方法中
(4)ReduceTask进程对每一组相同k的<k,v>组调用一次reduce()方法
​
3.Driver阶段
    相当于YARN集群的客户端,用于提交我们整个程序到YARN集群,提交的是封装了MapReduce程序相关运行参数的job对象

WordCount案例实操(统计一堆文件中单词出现的个数)

  1. Mapper部分

    ​1.1 将MapTask传给我们的文本内容先转换为String;

    ​1.2 根据空格将这一行切分成单词;

    ​1.3 将单词输出为<单词,1>

  2. Reducer部分

    ​2.1 汇总各个key的个数;

    ​2.2 输出该key的总次数;

  3. Driver部分

    3.1 获取配置信息,获取job对象实例;

    3.2 指定程序的jar包所在的本地路径;

    3.3 关联Mapper/Reducer业务类;

    3.4 指定Mapper输出数据的键值对类型;

    3.5 指定最终输出的数据的键值对类型;

    3.6 指定job的输入原始文件所在目录;

    3.7 指定job的输出结果所在目录;

    3.8 提交作业;

环境准备

(1)创建maven工程,MapReducerDemo

(2)在pom.xml文件中添加如下依赖

<dependencies>
   <dependency>
       <groupId>org.apache.hadoop</groupId>
       <artifactId>hadoop-client</artifactId>
       <version>3.1.3</version>
   </dependency>
   <dependency>
       <groupId>junit</groupId>
       <artifactId>junit</artifactId>
       <version>4.12</version>
   </dependency>
   <dependency>
       <groupId>org.slf4j</groupId>
       <artifactId>slf4j-log4j12</artifactId>
       <version>1.7.30</version>
   </dependency>
​
</dependencies>

(3)在项目的src/main/resources目录下,新建一个文件,命名为“log4j.properties”,在文件中添加内容如下。

log4j.rootLogger=INFO, stdout 
log4j.appender.stdout=org.apache.log4j.ConsoleAppender 
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout 
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n 
log4j.appender.logfile=org.apache.log4j.FileAppender 
log4j.appender.logfile.File=target/spring.log 
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout 
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

(4)编写Mapper类

/**
 * 以WordCount案例 为例:
 * 自定义的Mapper类 需要继承Hadoop提供的Mapper 并且根据具体业务指定输入数据和输出数据的数据类型
 *
 * 输入数据的类型
 * KEYIN,  读取文件的(每一行)偏移量  数字(LongWritable)
 * VALUEIN, 读取文件的一行数据  文本(Text)
 *
 * 输出数据的类型
 * KEYOUT,  输出数据的key的类型 就是一个单词(Text)
 * VALUEOUT 输出数据value的类型 给单词的标记 1 数字(IntWritable)
 *
 */
public class WordCountMapper extends Mapper<LongWritable, Text, Text, 
IntWritable>{
    Text k = new Text();
    IntWritable v = new IntWritable(1);
    @Override
    protected void map(LongWritable key, Text value, Context context)
    throws IOException, InterruptedException {
        // 1 获取一行
        String line = value.toString();
        // 2 切割
        String[] words = line.split(" ");
        // 3 输出
        for (String word : words) {
        k.set(word);
        context.write(k, v);
        }
    }
}
​

编写Reducer类

/**
 * 以WordCount案例 为例:
 * 自定义的Reducer类 需要继承Hadoop提供的Reducer 并且根据具体业务指定输入数据和输出数据的数据类型
 *
 * 输入数据的类型
 * KEYIN,  Map端输出的key的数据类型
 * VALUEIN, Map端输出的value的数据类型
 *
 * 输出数据的类型
 * KEYOUT,  输出数据的key的类型 就是一个单词(Text)
 * VALUEOUT 输出数据value的类型 单词出现的总次数(IntWritable)
 */
public class WordCountReducer extends Reducer<Text, IntWritable, Text, 
IntWritable>{
  int sum;
  IntWritable v = new IntWritable();
  @Override
  protected void reduce(Text key, Iterable<IntWritable> values,Context 
  context) throws IOException, InterruptedException {
      // 1 累加求和
      sum = 0;
      for (IntWritable count : values) {
      sum += count.get();
      }
      // 2 输出
       v.set(sum);
      context.write(key,v);
  }
}
​

编写Driver驱动类

 // MR程序的驱动类:主要用于提交MR任务
public class WordCountDriver {
public static void main(String[] args) throws IOException, 
ClassNotFoundException, InterruptedException {
    // 1 获取配置信息以及获取 job 对象
    Configuration conf = new Configuration();
    Job job = Job.getInstance(conf);
    // 2 关联本 Driver 程序的 jar
    job.setJarByClass(WordCountDriver.class);
    // 3 关联 Mapper 和 Reducer 的 jar
    job.setMapperClass(WordCountMapper.class);
    job.setReducerClass(WordCountReducer.class);
    // 4 设置 Mapper 输出的 kv 类型
    job.setMapOutputKeyClass(Text.class);
    job.setMapOutputValueClass(IntWritable.class);
    // 5 设置最终输出 kv 类型
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    // 6 设置输入和输出路径
    FileInputFormat.setInputPaths(job, new Path("hdfs://hadoop102:9820/wordcount/data.txt"));
    FileOutputFormat.setOutputPath(job, new Path("hdfs://hadoop102:9820/mroutput/wordcount"));
    // 7 提交 job
    boolean result = job.waitForCompletion(true);
    System.exit(result ? "成功" : "失败");
    }
}

(5)本地测试

​ 需要首先配置好HADOOP_HOME变量以及Windows运行依赖。

​ 在IDEA / Eclipse上运行代码。

(6)集群上测试

​ 用maven打jar包,需要添加的打包插件依赖

 <build>
        <plugins>
            <plugin>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.6.1</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                </configuration>
            </plugin>
            <plugin>
                <artifactId>maven-assembly-plugin</artifactId>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

注意:如果工程上显示红叉。在项目上右键->maven->Reimport即可。 如下解决方案

 <dependencies>
        <dependency>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-assembly-plugin</artifactId>
            <version>3.0.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-compiler-plugin</artifactId>
            <version>3.6.1</version>
        </dependency>
    </dependencies>

(1)将程序打成jar包,然后拷贝到Hadoop集群中

​ idea项目打成jar步骤:在idea上方的菜单栏“File”,点击找到“Project Structure”,找到“Artifacts”,点击“+”,选择“jar”,选中“From modules with dependencies…”,选择“main class”,完成后,点击“OK”,--》“Apply” ----》“OK”。再找到菜单栏上的“build”,选中“Build Artifacts”,找到你要打包的jar,选择“build”操作,编译完成后,刷新一下项目,会在项目中出现一个“out”,你打包的项目jar就在此文件夹下。在修改不带依赖的jar包名称为wc.jar,并拷贝该jar包到Hadoop集群。

(2)启动Hadoop集群

(3)执行WordCount程序

[xxx@hadoop102 software]$ hadoop jar  wc.jar
​
 com.itwwy.wordcount.WordcountDriver /user/itwwy/input /user/itwwy/output

7)在Windows上向集群提交任务(了解)

(1)添加必要配置信息
public class WordcountDriver {
​
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
​
        // 1 获取配置信息以及封装任务
        Configuration configuration = new Configuration();
        //设置HDFS NameNode的地址
       configuration.set("fs.defaultFS", "hdfs://hadoop102:9820");
        // 指定MapReduce运行在Yarn上
       configuration.set("mapreduce.framework.name","yarn");
        // 指定mapreduce可以在远程集群运行
       configuration.set("mapreduce.app-submission.cross-platform","true");
        //指定Yarn resourcemanager的位置
    configuration.set("yarn.resourcemanager.hostname","hadoop103");
​
        Job job = Job.getInstance(configuration);
​
        // 2 设置jar加载路径
    job.setJar("F:\\idea_project\\main\\bigdata1214\\MapReduce\\target\\MapReduce-1.0-SNAPSHOT.jar");
​
        // 3 设置map和reduce类
        job.setMapperClass(WordcountMapper.class);
        job.setReducerClass(WordcountReducer.class);
​
        // 4 设置map输出
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
​
        // 5 设置最终输出kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        
        // 6 设置输入和输出路径
        FileInputFormat.setInputPaths(job, new Path("hdfs://hadoop102:9820/wordcount/data.txt"));
        FileOutputFormat.setOutputPath(job, new Path("hdfs://hadoop102:9820/mroutput/wordcount"));
​
        // 7 提交
        boolean result = job.waitForCompletion(true);
​
        System.exit(result ? 0 : 1);
    }
}
(2)编辑任务配置
    * 检查第一个参数Main class是不是我们要运行的类的全类名,如果不是的话一定要修改!
    * 在VM options后面加上 :-DHADOOP_USER_NAME=itwwy
    * 在Program arguments后面加上两个参数分别代表输入输出路径,两个参数之间用空格隔开。如:hdfs://hadoop102:9820/input hdfs://hadoop102:9820/output
​
(3)打包,并将Jar包设置到Driver中
public class WordcountDriver {
​
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
​
        // 1 获取配置信息以及封装任务
        Configuration configuration = new Configuration();
​
       configuration.set("fs.defaultFS", "hdfs://hadoop102:9820");
       configuration.set("mapreduce.framework.name","yarn");
       configuration.set("mapreduce.app-submission.cross-platform","true");
       configuration.set("yarn.resourcemanager.hostname","hadoop103");
​
        Job job = Job.getInstance(configuration);
​
        // 2 设置jar加载路径
//job.setJarByClass(WordCountDriver.class);
        job.setJar("D:\IdeaProjects\mapreduce\target\mapreduce-1.0-SNAPSHOT.jar");
​
        // 3 设置map和reduce类
        job.setMapperClass(WordcountMapper.class);
        job.setReducerClass(WordcountReducer.class);
​
        // 4 设置map输出
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
​
        // 5 设置最终输出kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        
        // 6 设置输入和输出路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
​
        // 7 提交
        boolean result = job.waitForCompletion(true);
​
        System.exit(result ? 0 : 1);
    }
}
(4)提交并查看结果

Hadoop序列化

什么是序列化?

​ 序列化就是把内存中的对象,转换成字节序列(或者其他数据传输协议)以便于存储到磁盘(持久化)和网络传输。

​ 反序列化就是将收到字节序列(或者其他数据传输协议)或者是磁盘的持久化数据,转换成内存中的对象。

为什么要序列化?

​ 一般来说,活的对象只生存在内存中,关机断点就没有。活的对象只能由本地的进程使用,不能被发送到网络上的另一台计算机,然而序列化可以存储活的对象,可以将活的的对象发送到远程计算机。

为什么不用Java的序列化?

​ Java的序列化是一个重量级序列化框架(Serializable),一个对象被序列化后,会附带很多额外的信息(各种校验信息,Header,继承体系等),不便于在网络中高效传输。Hadoop的序列化机制(Writable)。

Hadoop 序列化特点?

(1)紧凑 :高效使用存储空间。(2)快速:读写数据的额外开销小。(3)互操作:支持多语言的交互

自定义bean对象实现序列化接口(Writable)

Hadoop框架内部传递一个bean对象,该对象就需要实现序列化接口。

具体实现bean对象序列化步骤:

(1)必须实现Writable接口;
(2)反序列化时,需要反射调用空参构造函数,故必须有空参构造。
    public FlowBean() {
        super();
    }
​
(3)重写序列化方法
    @Override
    public void write(DataOutput out) throws IOException {
        out.writeLong(upFlow);
        out.writeLong(downFlow);
        out.writeLong(sumFlow);
    }
(4)重写反序列化方法
    @Override
    public void readFields(DataInput in) throws IOException {
          upFlow = in.readLong();
          downFlow = in.readLong();
          sumFlow = in.readLong();
    }
(5)注意反序列化的顺序和序列化的顺序完全一致
(6)要想把结果显示在文件中,需要重写toString(),可用“\t”分开。
(7)若需要将自定义的bean放在key中传输,则还需要实现Comparable接口,因为MapReduce中的Shuffle过程要求对key必须能排序。
    @Override
    public int compareTo(FlowBean o) {
        // 倒序排列,从大到小
      return this.sumFlow > o.getSumFlow() ? -1 : 1;
    }
​

编写流量统计的Bean对象

package com.itwwy.mapreduce.flowsum;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.Writable;
​
// 1 实现writable接口
public class FlowBean implements Writable{
​
    private long upFlow;
    private long downFlow;
    private long sumFlow;
    
    //2  反序列化时,需要反射调用空参构造函数,所以必须有
    public FlowBean() {
        super();
    }
​
    public FlowBean(long upFlow, long downFlow) {
        super();
        this.upFlow = upFlow;
        this.downFlow = downFlow;
        this.sumFlow = upFlow + downFlow;
    }
    
    //3  写序列化方法
    @Override
    public void write(DataOutput out) throws IOException {
        out.writeLong(upFlow);
        out.writeLong(downFlow);
        out.writeLong(sumFlow);
    }
    
    //4 反序列化方法
    //5 反序列化方法读顺序必须和写序列化方法的写顺序必须一致
    @Override
    public void readFields(DataInput in) throws IOException {
        this.upFlow  = in.readLong();
        this.downFlow = in.readLong();
        this.sumFlow = in.readLong();
    }
​
    // 6 编写toString方法,方便后续打印到文本
    @Override
    public String toString() {
        return upFlow + "\t" + downFlow + "\t" + sumFlow;
    }
​
    public long getUpFlow() {
        return upFlow;
    }
​
    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }
​
    public long getDownFlow() {
        return downFlow;
    }
​
    public void setDownFlow(long downFlow) {
        this.downFlow = downFlow;
    }
​
    public long getSumFlow() {
        return sumFlow;
    }
​
    public void setSumFlow(long sumFlow) {
        this.sumFlow = sumFlow;
    }
}

编写Mapper类

import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
​
public class FlowCountMapper extends Mapper<LongWritable, Text, Text, FlowBean>{
    
    FlowBean v;
    Text k = new Text();
    
    @Override
    protected void map(LongWritable key, Text value, Context context)   throws IOException, InterruptedException {
        
        // 1 获取一行
        String line = value.toString();
        
        // 2 切割字段
        String[] fields = line.split("\t");
        
        // 3 封装对象
        // 取出手机号码
        String phoneNum = fields[1];
​
        // 取出上行流量和下行流量
        long upFlow = Long.parseLong(fields[fields.length - 3]);
        long downFlow = Long.parseLong(fields[fields.length - 2]);
​
        k.set(phoneNum);
        v = new FlowBean(downFlow, upFlow);
        
        // 4 写出
        context.write(k, v);
    }
}

编写Reducer类

import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
​
public class FlowCountReducer extends Reducer<Text, FlowBean, Text, FlowBean> {
​
    @Override
    protected void reduce(Text key, Iterable<FlowBean> values, Context context)throws IOException, InterruptedException {
​
        long sum_upFlow = 0;
        long sum_downFlow = 0;
​
        // 1 遍历所用bean,将其中的上行流量,下行流量分别累加
        for (FlowBean flowBean : values) {
            sum_upFlow += flowBean.getUpFlow();
            sum_downFlow += flowBean.getDownFlow();
        }
​
        // 2 封装对象
        FlowBean resultBean = new FlowBean(sum_upFlow, sum_downFlow);
        
        // 3 写出
        context.write(key, resultBean);
    }
}

编写Driver驱动类

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
​
public class FlowsumDriver {
​
    public static void main(String[] args) throws IllegalArgumentException, IOException, ClassNotFoundException, InterruptedException {
        
// 输入输出路径需要根据自己电脑上实际的输入输出路径设置
args = new String[] { "e:/input/inputflow", "e:/output1" };
​
        // 1 获取配置信息,或者job对象实例
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);
​
        // 2 指定本程序的jar包所在的本地路径
        job.setJarByClass(FlowsumDriver.class);
​
        // 3 指定本业务job要使用的mapper/Reducer业务类
        job.setMapperClass(FlowCountMapper.class);
        job.setReducerClass(FlowCountReducer.class);
​
        // 4 指定mapper输出数据的kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(FlowBean.class);
​
        // 5 指定最终输出的数据的kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);
        
        // 6 指定job的输入原始文件所在目录
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
​
        // 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

MapReduce框架原理

Input -----(InputFormat)-----> Mapper -----(Shuffle)----->Reducer ------(OutputFormat)-----> Output

Input输入数据到Mapper这一过程为MapTask

Reducer输出数据到Output这一过程为ReduceTask

InputFormat数据输入

切片与MapTask并行度决定机制

1)问题引出​ MapTask 的并行度决定 Map 阶段的任务处理并发度,进而影响到整个 Job 的处理速度。​ 思考:1G 的数据,启动 8 个 MapTask,可以提高集群的并发处理能力。那么 1K 的数据,也启动 8 个 MapTask,会提高集群性能吗?MapTask 并行任务是否越多越好呢?哪些因素影响了 MapTask 并行度?

2)MapTask 并行度决定机制

​ 数据块:Block是HDFS物理上把数据分成一块一块。数据块是HDFS存储数据单位。

​ 数据切片:数据切片知识在逻辑上对输入进行分片,并不会在磁盘上将其切分成片进行存储。数据切片是MapReduce程序计算输入数据的单位,一个切片会对应启动一个MapTask。

    1)一个Job的Map阶段并行度有客户端在提交Job时的切片数决定;
    2)每一个Split切片分配一个MapTask并行实例处理;
    3)默认情况下,切片大小=BlockSize;
    4)切片时不考虑数据集整体,而是逐个针对每一个文件单独切片。

Job 提交流程源码和切片源码详解

1)Job 提交流程源码详解

waitForCompletion()
submit();
// 1 建立连接
connect();
// 1)创建提交 Job 的代理
new Cluster(getConfiguration());
// (1)判断是本地运行环境还是 yarn 集群运行环境
initialize(jobTrackAddr, conf); 
// 2 提交 job
submitter.submitJobInternal(Job.this, cluster)
// 1)创建给集群提交数据的 Stag 路径
Path jobStagingArea = JobSubmissionFiles.getStagingDir(cluster, conf);
// 2)获取 jobid ,并创建 Job 路径
JobID jobId = submitClient.getNewJobID();
// 3)拷贝 jar 包到集群
copyAndConfigureFiles(job, submitJobDir);
rUploader.uploadFiles(job, jobSubmitDir);
// 4)计算切片,生成切片规划文件
writeSplits(job, submitJobDir);
maps = writeNewSplits(job, jobSubmitDir);
input.getSplits(job);
// 5)向 Stag 路径写 XML 配置文件
writeConf(conf, submitJobFile);
conf.writeXml(out);
// 6)提交 Job,返回提交状态
status = submitClient.submitJob(jobId, submitJobDir.toString(),job.getCredentials());

2)FileInputFormat 切片源码解析(input.getSplits(job))

(1)程序先找到你数据存储的目录。
(2)开始遍历处理(规划切片)目录下的每一个文件
(3)遍历第一个文件ss.txt
    a)获取文件大小fs.sizeOf(ss.txt);
    b)计算切片大小;
computeSplitSize(Math.max(minSize,Math.min(maxSize,blocksize)))=blocksize=128M
    c)默认情况下,切片大小=blocksize;
    d)开始切,形成第1个切片:ss.txt—0:128M 第2个切片ss.txt—128:256M 第3个切片ss.txt—256M:300M;
    (每次切片时,都要判断切完剩下的部分是否大于块的1.1倍,不大于1.1倍就划分一块切片)
    e)将切片信息写到一个切片规划文件中;
    f)整个切片的核心过程在getSplit()方法中完成;
    g)InputSplit只记录了切片的元数据信息,比如起始位置、长度以及所在的节点列表等;
(4)提交切片规划文件到YARN上,YARN上的MrAppMaster就可以根据切片规划文件计算开启MapTask个数。
​

FileInputFormat 切片机制(input.getSplits(job))

1、切片机制

​ (1)简单地按照文件的内容长度进行切片;

​ (2)切片大小,默认等于Block大小;

​ (3)切片时不考虑数据集整体,而是逐个针对每一个文件单独切片。

2、FileInputFormat切片大小的参数配置

(1)源码中计算切片大小的公式
    Math.max(minSize, Math.min(maxSize, blockSize));
    mapreduce.input.fileinputformat.split.minsize=1 //默认值为1
    mapreduce.input.fileinputformat.split.maxsize=      Long.MAXValue //默认值Long.MAXValue
因此,默认情况下,切片大小=blocksize。
(2)切片大小设置
    maxsize(切片最大值):参数如果调得比blockSize小,则会让切片变小,而且就等于配置的这个参数的值。
    minsize(切片最小值):参数调的比blockSize大,则可以让切片变得比blockSize还大。
(3)获取切片信息API
    // 获取切片的文件名称
     String name = inputSplit.getPath().getName();
    // 根据文件类型获取切片信息
    FileSplit inputSplit = (FileSplit)context.getInputSplit();  

FileInputFormat 常见的接口实现类

包括:TextInputFormat、KeyValueTextInputFormat、NLineInputFormat、CombineTextInputFormat 和自定义 InputFormat 等。

TextInputFormat

TextInputFormat是默认的FileInputFormat实现类。按行读取每条记录。键是存储该行在整个文件中的 起始字节偏移量,LongWritable类型。值是这行的内容,不包括任何行终止符(换行符和回车符),Text类型。

CombineTextInputFormat切片机制

框架默认的TextInputFormat切片机制是对任务按文件规划切片,不管文件多小,都会是一个单独的切片,都会交给一个MapTask,这样若有大量小文件,就会产生大量的MapTask,处理效率会很低。

1)应用场景:

​ CombineTextInputFormat用于小文件过多的场景,它可以将多个小文件从逻辑卷上规划到一个切片中,这样,多个小文件就可以交给一个MapTask处理。

2)虚拟存储切片最大值设置

// 4M
CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);
// 注意:虚拟存储切片最大值设置最好根据实际的小文件大小情况设置具体的值

3)切片机制

​ 生成切片过程包括:虚拟存储过程切片过程

​ setMaxInputSplitSzie值为4M。

虚拟存储:

​ 将输入目录下所有的文件大小,一次和设置的setMaxInputSplitSize值比较,如果不大于设置的最大值,逻辑上划分一个块。如果输入文件大于设置的最大值且大于两倍,那么以最大值切割一块;当剩余数据大小超过设置的最大值且不大于最大值的2倍,此时将文件平均分成2个虚拟存储块(防止出现太小切片)。

切片过程:

​ a、判断虚拟存储的文件大小是否大于setMaxInputSplitSzie的值,大于等于则单独形成一个切片。

​ b、如果不大于则跟下一个虚拟存储文件进行合并,共同形成一个切片。

测试举例:
    有4个小文件大小分别为1.7M、5.1M、3.4M以及6.8M这四个小文件,则虚拟存储之后形成6个文件块,大小分别为:
1.7M,(2.55M、2.55M),3.4M以及(3.4M、3.4M)
最终会形成3个切片,大小分别为:
(1.7+2.55)M,(2.55+3.4)M,(3.4+3.4)M

CombineTextInputFormat案例实操

需求:将输入的大量小我呢见合并成一个切片统一处理。

实现过程:

(1)不做任何处理,运行1.6节的WordCount案例程序,观察切片个数为4。
​
(2)在WordcountDriver中增加如下代码,运行程序,并观察运行的切片个数为3。
    (a)驱动类中添加代码如下:
    // 如果不设置InputFormat,它默认用的是TextInputFormat.class
​
job.setInputFormatClass(CombineTextInputFormat.class);
​
    //虚拟存储切片最大值设置4m
CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);
    (b)运行结果为3个切片。
​
(3)在WordcountDriver中增加如下代码,运行程序,并观察运行的切片个数为1。
    (a)驱动中添加代码如下:
    // 如果不设置InputFormat,它默认用的是      TextInputFormat.class
                     job.setInputFormatClass(CombineTextInputFormat.class);
​
    //虚拟存储切片最大值设置20m
CombineTextInputFormat.setMaxInputSplitSize(job, 20971520);
    (b)运行如果为1个切片。
​

MapReduce工作流程

​ 1、待处理文本/usr/input/ss.txt 200M

​ 2、客户端submit()前,获取待处理数据的信息,然后根据参数配,形成一个任务分配的规划

​ ss.txt 0-128

​ ss.txt 128-200

​ 3、提交信息 Job.split、wc.jar、Job.xml

​ 4、计算出MapTask数量;

​ 5、默认TextInputFormat切片机制

​ 6、逻辑运算;

​ 7、向环形缓冲区写入<key,value>数据

​ 8、分区、排序;

​ 9、溢出到文件(分区且区内有序)

​ 10、Merge归并排序;

​ 11、合并。

​ 12、所有MapTask任务完成后,启动相应数量的ReduceTask,并告知ReduceTask处理数据范围(数据分区)

​ 13、下载到ReduceTask到本地磁盘;

​ 14、读取数据,一次读取一组;

​ 15、分组;

​ 16、默认TextOutputFormat切片机制

注意:Shuffle过程只是从 【第7步开始到第16步结束】。

具体Shuffl过程详解:

  (1)MapTask收集我们的map()方法输出的kv对,放到内存缓冲区中
  (2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件
  (3)多个溢出文件会被合并成大的溢出文件
  (4)在溢出过程及合并的过程中,都要调用Partitioner进行分区和针对key进行排序
  (5)ReduceTask根据自己的分区号,去各个MapTask机器上取相应的结果分区数据
  (6)ReduceTask会抓取到同一个分区的来自不同MapTask的结果文件,ReduceTask会将这些文件再进行合并(归并排序)
  (7)合并成大文件后,Shuffle的过程也就结束了,后面进入ReduceTask的逻辑运算过程(从文件中取出一个一个的键值对Group,调用用户自定义的reduce()方法)

注意:

(1)Shuffle中的缓冲区大小会影响到MapReduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快。

(2)缓冲区的大小可以通过参数调整,参数:mapreduce.task.io.sort.mb默认100M。

(3)源码解析流程
=================== MapTask ===================
context.write(k, NullWritable.get());   //自定义的map方法的写出,进入output.write(key, value);  
//MapTask727行,收集方法,进入两次 
collector.collect(key, value,partitioner.getPartition(key, value, partitions));
HashPartitioner(); //默认分区器
collect()  //MapTask1082行 map端所有的kv全部写出后会走下面的close方法
    close() //MapTask732行
    collector.flush() // 溢出刷写方法,MapTask735行,提前打个断点,进入sortAndSpill() //溢写排序,MapTask1505行,进入sorter.sort()   QuickSort //溢写排序方法,MapTask1625行,进入mergeParts(); //合并文件,MapTask1527行,进入collector.close();
=================== ReduceTask ===================
if (isMapOrReduce())  //reduceTask324行,提前打断点
initialize()   // reduceTask333行,进入
init(shuffleContext);  // reduceTask375行,走到这需要先给下面的打断点
totalMaps = job.getNumMapTasks(); // ShuffleSchedulerImpl第120行,提前打断点
merger = createMergeManager(context); //合并方法,Shuffle第80行
// MergeManagerImpl第232 235行,提前打断点
this.inMemoryMerger = createInMemoryMerger(); //内存合并
this.onDiskMerger = new OnDiskMerger(this); //磁盘合并
eventFetcher.start();  //开始抓取数据,Shuffle第107行,提前打断点
eventFetcher.shutDown();  //抓取结束,Shuffle第141行,提前打断点
copyPhase.complete();  //copy阶段完成,Shuffle第151行
taskStatus.setPhase(TaskStatus.Phase.SORT);  //开始排序阶段,Shuffle第152行
sortPhase.complete();  //排序阶段完成,即将进入reduce阶段 reduceTask382行
reduce();  //reduce阶段调用的就是我们自定义的reduce方法,会被调用多次
cleanup(context); //reduce完成之前,会最后调用一次Reducer里面的cleanup方法

总结

    当Job通过waitForCompletion提交以后,首先会检测这个Job的状态,设置兼容Api,连接客户端,这个客户端是哪个,跟你运行在哪里有很大的关系,本地就是本地客户端,集群就是Yarn客户端,然后开始真正的提交任务,在然后创建临时目录,分配JobID,通过调用TextInputFormat算出切片数量,每次先判断剩余的数量是否比128的1.1倍要大,如果大于,就切一片,如果小于128d的1.1倍也是q,在把Job的jar包和job切片信息,一些配置信息统统写到临时目录里面,供所有Map使用,然后MapTask调用TextInputFormat的LineRecordReader,每个Map都有一个LineRecordReader,LineRecordReader复杂把输入文件变成K,V值,K是偏移量,V是这行的数据。把K,V传给我们自己的map方法里面。

Partition分区

1、问题引出:要求将统计结果按照条件输出到不同文件(分区)。比如,将统计结果按照手机归属地不同省份输出到不同文件中(分区)。

2、默认Partition分区

​ public class HashPartitioner<K,V> extends Partitioner<K,V> {

​ public int getPartition(K key,V vlaue, int numReduceTasks)

​ return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;

}

默认分区是根据key的hashCode对ReduceTasks个数取模得到的。用户没法控制哪个key存储到哪个分区。

排序

1、全排序

最终输出结果只有一个文件,多个map只对应一个reduce,且文件内部有序。

实现方式:只设置ReduceTask;

但该方法在处理大型文件时效率极低,因为一台机器处理所有文件,完全丧失了MapReduce所提供的并行架构。

案例:按照收集的总流量进行倒序排序

(1)FlowBean对象在在需求1基础上增加了比较功能
package com.hadoop.mapreduce.sort;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable;
​
public class FlowBean implements WritableComparable<FlowBean> {
​
    private Long upFlow;
    private Long downFlow;
    private Long sumFlow;
​
    // 反序列化时,需要反射调用空参构造函数,所以必须有
    public FlowBean() {
        super();
    }
​
    public FlowBean(long upFlow, long downFlow) {
        super();
        this.upFlow = upFlow;
        this.downFlow = downFlow;
        this.sumFlow = upFlow + downFlow;
    }
​
    public void set(long upFlow, long downFlow) {
        this.upFlow = upFlow;
        this.downFlow = downFlow;
        this.sumFlow = upFlow + downFlow;
    }
​
    public long getSumFlow() {
        return sumFlow;
    }
​
    public void setSumFlow(long sumFlow) {
        this.sumFlow = sumFlow;
    }   
​
    public long getUpFlow() {
        return upFlow;
    }
​
    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }
​
    public long getDownFlow() {
        return downFlow;
    }
​
    public void setDownFlow(long downFlow) {
        this.downFlow = downFlow;
    }
​
    /**
     * 序列化方法
     * @param out
     * @throws IOException
     */
    @Override
    public void write(DataOutput out) throws IOException {
        out.writeLong(upFlow);
        out.writeLong(downFlow);
        out.writeLong(sumFlow);
    }
​
    /**
     * 反序列化方法 注意反序列化的顺序和序列化的顺序完全一致
     * @param in
     * @throws IOException
     */
    @Override
    public void readFields(DataInput in) throws IOException {
        upFlow = in.readLong();
        downFlow = in.readLong();
        sumFlow = in.readLong();
    }
​
    @Override
    public String toString() {
        return upFlow + "\t" + downFlow + "\t" + sumFlow;
    }
​
    @Override
    public int compareTo(FlowBean bean) {
        
        int result;
        
        // 按照总流量大小,倒序排列
        if (sumFlow > bean.getSumFlow()) {
            result = -1;
        }else if (sumFlow < bean.getSumFlow()) {
            result = 1;
        }else {
            result = 0;
        }
​
        return result;
    }
}
(2)编写Mapper类
package com.hadoop.mapreduce.sort;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
​
public class FlowCountSortMapper extends Mapper<LongWritable, Text, FlowBean, Text>{
​
    FlowBean bean = new FlowBean();
    Text v = new Text();
​
    @Override
    protected void map(LongWritable key, Text value, Context context)   throws IOException, InterruptedException {
​
        // 1 获取一行
        String line = value.toString();
        
        // 2 截取
        String[] fields = line.split("\t");
        
        // 3 封装对象
        String phoneNbr = fields[1];
        long upFlow = Long.parseLong(fields[1]);
        long downFlow = Long.parseLong(fields[2]);
        
        bean.set(upFlow, downFlow);
        v.set(phoneNbr);
        
        // 4 输出
        context.write(bean, v);
    }
}
(3)编写Reducer类
package com.hadoop.mapreduce.sort;
import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
​
public class FlowCountSortReducer extends Reducer<FlowBean, Text, Text, FlowBean>{
​
    @Override
    protected void reduce(FlowBean key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
        
        // 循环输出,避免总流量相同情况
        for (Text text : values) {
            context.write(text, key);
        }
    }
}
(4)编写Driver类
package com.hadoop.mapreduce.sort;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
​
public class FlowCountSortDriver {
​
    public static void main(String[] args) throws ClassNotFoundException, IOException, InterruptedException {
​
        // 输入输出路径需要根据自己电脑上实际的输入输出路径设置
        args = new String[]{"e:/output1","e:/output2"};
​
        // 1 获取配置信息,或者job对象实例
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);
​
        // 2 指定本程序的jar包所在的本地路径
        job.setJarByClass(FlowCountSortDriver.class);
​
        // 3 指定本业务job要使用的mapper/Reducer业务类
        job.setMapperClass(FlowCountSortMapper.class);
        job.setReducerClass(FlowCountSortReducer.class);
​
        // 4 指定mapper输出数据的kv类型
        job.setMapOutputKeyClass(FlowBean.class);
        job.setMapOutputValueClass(Text.class);
​
        // 5 指定最终输出的数据的kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);
​
        // 6 指定job的输入原始文件所在目录
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        
        // 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

2、区内排序

案例:根据手机号前三位进行总流量内部排序

1、需要先定义一个自定义分区类,按照手机号前三位进行分区

(1)增加自定义分区类
package com.hadoop.mapreduce.sort;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;
​
public class ProvincePartitioner extends Partitioner<FlowBean, Text> {
​
    @Override
    public int getPartition(FlowBean key, Text value, int numPartitions) {
        
        // 1 获取手机号码前三位
        String preNum = value.toString().substring(0, 3);
        
        int partition = 4;
        
        // 2 根据手机号归属地设置分区
        if ("136".equals(preNum)) {
            partition = 0;
        }else if ("137".equals(preNum)) {
            partition = 1;
        }else if ("138".equals(preNum)) {
            partition = 2;
        }else if ("139".equals(preNum)) {
            partition = 3;
        }
​
        return partition;
    }
}
(2)在驱动类中添加分区类
// 加载自定义分区类
job.setPartitionerClass(ProvincePartitioner.class);
// 设置Reducetask个数
job.setNumReduceTasks(5);

Combiner合并(给Reducer减负)

(1)Combiner是MapReduce程序中Mapper和Reducer之外的一种组件;

(2)Combiner组件的父类是Reducer;

(3)Combiner和Reducer的区别在于运行的位置

​ Combiner是在每一个MapTask所在的节点运行;

​ Reducer是接收全局所有Mapper的输出结果;

(4)Combiner的意义是对每一个MapTask的输出进行局部汇总,以减小网络传输量

(5)Combiner能够应用的前提是不能影响最终的业务逻辑,而且,Combiner的出书KV值应该跟Reducer的输入KV类型要对应起来。

(a)自定义一个Combiner继承Reducer,重写Reduce方法
public class WordcountCombiner extends Reducer<Text, IntWritable, Text,IntWritable>{

	@Override
	protected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {

        // 1 汇总操作
		int count = 0;
		for(IntWritable v :values){
			count += v.get();
		}

        // 2 写出
		context.write(key, new IntWritable(count));
	}
}
(b)在Job驱动类中设置:  
job.setCombinerClass(WordcountCombiner.class);


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值