一、安装anaconda
安装包链接
链接:https://pan.baidu.com/s/1dvNVT4VW34SW4EVoZRqNgA
提取码:batk
使用bash命令运行安装包
一直回车,遇到选择选yes即可
安装成功
配置环境变量
export PATH=$PATH:/root/anaconda3/bin
可以看出安装成功
二、配置jupyter notebook
配置环境变量后使用下面命令生成jupyter notebook配置文件
jupyter notebook --generate-config
使用下面命令设置jupyter密码并记住sha1值,后面配置要用
python -c "import IPython; print(IPython.lib.passwd())"
在刚刚生成的配置文件中添加下面语句
# 允许所有IP登录
c.NotebookApp.ip = '*'
# 使用刚刚生成的sha1值
c.NotebookApp.password = 'sha1:679a04c48eec:050346283252410f864ddfbf397a5aa64dd2ae09'
# 是否自动打开浏览器
c.NotebookApp.open_browser = False
# 允许使用root用户登录
c.NotebookApp.allow_root =True
# 设置访问jupyter notebook的端口为4040
c.NotebookApp.port = 4040
c.ContentsManager.root_dir = '/usr/jupyter'
c.NotebookApp.notebook_dir = '/usr/jupyter'
启动jupyter notebook
jupyter notebook
输入密码成功登录
三、案例分析
代码下载链接:
链接:https://pan.baidu.com/s/1Zjb-prt6v2Nbhhy6M1ZoUQ
提取码:cgnc
数据下载链接:
链接:https://pan.baidu.com/s/1UgkbxCDS_ne2zFqHxFAn8w
提取码:qskr
本案例使用的数据集来自数据网站Kaggle的美国新冠肺炎疫情数据集,该数据集以数据表us-counties.csv组织,其中包含了美国发现首例新冠肺炎确诊病例至2020-05-19的相关数据
1.格式转换
原始数据集是以.csv文件组织的,为了方便spark读取生成RDD或者DataFrame,首先将us-counties.csv转换为.txt格式文件us-counties.txt
import pandas as pd
#.csv->.txt
data = pd.read_csv('us-counties.csv')
with open('us-counties.txt','a+',encoding='utf-8') as f:
for line in data.values:
f.write((str(line[0])+'\t'+str(line[1])+'\t'
+str(line[2])+'\t'+str(line[3])+'\t'+str(line[4])+'\n'))
然后将数据上传到hdfs上
hdfs dfs -put us-counties.txt /test4
2.读取文件生成DataFrame
这里读取的路径都是hdfs路径
import findspark
findspark.init()
from pyspark import SparkConf,SparkContext
from pyspark.sql import Row
from pyspark.sql.types import *
from pyspark.sql import SparkSession
from datetime import datetime
import pyspark.sql.functions as func
def toDate(inputStr):
newStr = ""
if len(inputStr) == 8:
s1 = inputStr[0:4]
s2 = inputStr[5:6]
s3 = inputStr[7]
newStr = s1+"-"+"0"+s2+"-"+"0"+s3
else:
s1 = inputStr[0:4]
s2 = inputStr[5:6]
s3 = inputStr[7:]
newStr = s1+"-"+"0"+s2+"-"+s3
date = datetime.strptime(newStr, "%Y-%m-%d")
return date
spark = SparkSession.builder.config(conf = SparkConf()).getOrCreate()
fields = [StructField("date", DateType(),False),StructField("county", StringType(),False),StructField("state", StringType(),False),
StructField("cases", IntegerType(),False),StructField("deaths", IntegerType(),False),]
schema = StructType(fields)
rdd0 = spark.sparkContext.textFile("/test4/us-counties.txt")
rdd1 = rdd0.map(lambda x:x.split("\t")).map(lambda p: Row(toDate(p[0]),p[1],p[2],int(p[3]),int(p[4])))
shemaUsInfo = spark.createDataFrame(rdd1,schema)
shemaUsInfo.createOrReplaceTempView("usInfo")
3.进行数据分析
这里存储的路径都是hdfs路径
(1)计算每日的累计确诊病例数和死亡数
df = shemaUsInfo.groupBy("date").agg(func.sum("cases"),func.sum("deaths")).sort(shemaUsInfo["date"].asc())
#列重命名
df1 = df.withColumnRenamed("sum(cases)","cases").withColumnRenamed("sum(deaths)","deaths")
df1.repartition(1).write.json("/test4/result1")
#注册为临时表供下一步使用
df1.createOrReplaceTempView("ustotal")
(2)计算每日较昨日的新增确诊病例数和死亡病例数
df2 = spark.sql("select t1.date,t1.cases-t2.cases as caseIncrease,t1.deaths-t2.deaths as deathIncrease from ustotal t1,ustotal t2 where t1.date = date_add(t2.date,1)")
df2.sort(df2["date"].asc()).repartition(1).write.json("/test4/result2")
(3)统计截止5.19日 美国各州的累计确诊人数和死亡人数
df3 = spark.sql("select date,state,sum(cases) as totalCases,sum(deaths) as totalDeaths,round(sum(deaths)/sum(cases),4) as deathRate from usInfo where date = to_date('2020-05-19','yyyy-MM-dd') group by date,state")
df3.sort(df3["totalCases"].desc()).repartition(1).write.json("/test4/result3") #写入hdfs
df3.createOrReplaceTempView("eachStateInfo")
(4)找出美国确诊最多的10个州
df4 = spark.sql("select date,state,totalCases from eachStateInfo order by totalCases desc limit 10")
df4.repartition(1).write.json("/test4/result4")
(5)找出美国死亡最多的10个州
df5 = spark.sql("select date,state,totalDeaths from eachStateInfo order by totalDeaths desc limit 10")
df5.repartition(1).write.json("/test4/result5")
(6)找出美国确诊最少的10个州
df6 = spark.sql("select date,state,totalCases from eachStateInfo order by totalCases asc limit 10")
df6.repartition(1).write.json("/test4/result6")
(7)找出美国死亡最少的10个州
df7 = spark.sql("select date,state,totalDeaths from eachStateInfo order by totalDeaths asc limit 10")
df7.repartition(1).write.json("/test4/result7")
(8)统计截止5.19全美和各州的病死率
df8 = spark.sql("select 1 as sign,date,'USA' as state,round(sum(totalDeaths)/sum(totalCases),4) as deathRate from eachStateInfo group by date union select 2 as sign,date,state,deathRate from eachStateInfo").cache()
df8.sort(df8["sign"].asc(),df8["deathRate"].desc()).repartition(1).write.json("/test4/result8")
4.数据可视化
导入所需库
from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.charts import Line
from pyecharts.components import Table
from pyecharts.charts import WordCloud
from pyecharts.charts import Pie
from pyecharts.charts import Funnel
from pyecharts.charts import Scatter
from pyecharts.charts import PictorialBar
from pyecharts.options import ComponentTitleOpts
from pyecharts.globals import SymbolType
import json
将hdfs生成结果放在本地,因为可视化部分不需要使用集群,下面使用的路径均为本地路径
(1)画出每日的累计确诊病例数和死亡数——>双柱状图
root = "test4/result1/part-00000-35b0ecb6-8abe-4342-90ce-bd9b86acc054-c000.json"
date = []
cases = []
deaths = []
with open(root, 'r') as f:
while True:
line = f.readline()
if not line: # 到 EOF,返回空字符串,则终止循环
break
js = json.loads(line)
date.append(str(js['date']))
cases.append(int(js['cases']))
deaths.append(int(js['deaths']))
d = (
Bar()
.add_xaxis(date)
.add_yaxis("累计确诊人数", cases, stack="stack1")
.add_yaxis("累计死亡人数", deaths, stack="stack1")
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(title_opts=opts.TitleOpts(title="美国每日累计确诊和死亡人数"))
)
d.load_javascript()
d.render_notebook()
(2)画出每日的新增确诊病例数和死亡数——>折线图
root = "test4/result2/part-00000-6a74a9a3-dc2c-4d6b-997c-a74762a27bd0-c000.json"
date = []
cases = []
deaths = []
with open(root, 'r') as f:
while True:
line = f.readline()
if not line: # 到 EOF,返回空字符串,则终止循环
break
js = json.loads(line)
date.append(str(js['date']))
cases.append(int(js['caseIncrease']))
deaths.append(int(js['deathIncrease']))
L1 = (
Line(init_opts=opts.InitOpts(width="1600px", height="800px"))
.add_xaxis(xaxis_data=date)
.add_yaxis(
series_name="新增确诊",
y_axis=cases,
markpoint_opts=opts.MarkPointOpts(
data=[
opts.MarkPointItem(type_="max", name="最大值")
]
),
markline_opts=opts.MarkLineOpts(
data=[opts.MarkLineItem(type_="average", name="平均值")]
),
)
.set_global_opts(
title_opts=opts.TitleOpts(title="美国每日新增确诊折线图", subtitle=""),
tooltip_opts=opts.TooltipOpts(trigger="axis"),
toolbox_opts=opts.ToolboxOpts(is_show=True),
xaxis_opts=opts.AxisOpts(type_="category", boundary_gap=False),
)
)
L1.load_javascript()
L1.render_notebook()
L2 = (
Line(init_opts=opts.InitOpts(width="1600px", height="800px"))
.add_xaxis(xaxis_data=date)
.add_yaxis(
series_name="新增死亡",
y_axis=deaths,
markpoint_opts=opts.MarkPointOpts(
data=[opts.MarkPointItem(type_="max", name="最大值")]
),
markline_opts=opts.MarkLineOpts(
data=[
opts.MarkLineItem(type_="average", name="平均值"),
opts.MarkLineItem(symbol="none", x="90%", y="max"),
opts.MarkLineItem(symbol="circle", type_="max", name="最高点"),
]
),
)
.set_global_opts(
title_opts=opts.TitleOpts(title="美国每日新增死亡折线图", subtitle=""),
tooltip_opts=opts.TooltipOpts(trigger="axis"),
toolbox_opts=opts.ToolboxOpts(is_show=True),
xaxis_opts=opts.AxisOpts(type_="category", boundary_gap=False),
)
)
L2.load_javascript()
L2.render_notebook()
(3)画出截止5.19,美国各州累计确诊、死亡人数和病死率—>表格
root = "test4/result3/part-00000-253c81bd-4448-4823-954f-e7e9934605c9-c000.json"
allState = []
with open(root, 'r') as f:
while True:
line = f.readline()
if not line: # 到 EOF,返回空字符串,则终止循环
break
js = json.loads(line)
row = []
row.append(str(js['state']))
row.append(int(js['totalCases']))
row.append(int(js['totalDeaths']))
row.append(float(js['deathRate']))
allState.append(row)
table = Table()
headers = ["State name", "Total cases", "Total deaths", "Death rate"]
rows = allState
table.add(headers, rows)
table.set_global_opts(
title_opts=ComponentTitleOpts(title="美国各州疫情一览", subtitle="")
)
table.load_javascript()
table.render_notebook()
(4)画出美国确诊最多的10个州——>词云图
root = "test4/result4/part-00000-9dc04a1e-7763-4429-93fc-23b2f3d45512-c000.json"
data = []
with open(root, 'r') as f:
while True:
line = f.readline()
if not line: # 到 EOF,返回空字符串,则终止循环
break
js = json.loads(line)
row=(str(js['state']),int(js['totalCases']))
data.append(row)
c = (
WordCloud()
.add("", data, word_size_range=[20, 100], shape=SymbolType.DIAMOND)
.set_global_opts(title_opts=opts.TitleOpts(title="美国各州确诊Top10"))
)
c.load_javascript()
c.render_notebook()
(5)画出美国死亡最多的10个州——>象柱状图
root = "test4/result5/part-00000-a8169860-0a64-4c5c-b740-fcdafc74505e-c000.json"
state = []
totalDeath = []
with open(root, 'r') as f:
while True:
line = f.readline()
if not line: # 到 EOF,返回空字符串,则终止循环
break
js = json.loads(line)
state.insert(0,str(js['state']))
totalDeath.insert(0,int(js['totalDeaths']))
c = (
PictorialBar()
.add_xaxis(state)
.add_yaxis(
"",
totalDeath,
label_opts=opts.LabelOpts(is_show=False),
symbol_size=18,
symbol_repeat="fixed",
symbol_offset=[0, 0],
is_symbol_clip=True,
symbol=SymbolType.ROUND_RECT,
)
.reversal_axis()
.set_global_opts(
title_opts=opts.TitleOpts(title="PictorialBar-美国各州死亡人数Top10"),
xaxis_opts=opts.AxisOpts(is_show=False),
yaxis_opts=opts.AxisOpts(
axistick_opts=opts.AxisTickOpts(is_show=False),
axisline_opts=opts.AxisLineOpts(
linestyle_opts=opts.LineStyleOpts(opacity=0)
),
),
)
)
c.load_javascript()
c.render_notebook()
(6)找出美国确诊最少的10个州——>词云图
root = "test4/result6/part-00000-9dc41291-7691-4ab3-8a09-2e4fb32bbd02-c000.json"
data = []
with open(root, 'r') as f:
while True:
line = f.readline()
if not line: # 到 EOF,返回空字符串,则终止循环
break
js = json.loads(line)
row=(str(js['state']),int(js['totalCases']))
data.append(row)
c = (
WordCloud()
.add("", data, word_size_range=[100, 20], shape=SymbolType.DIAMOND)
)
c.load_javascript()
c.render_notebook()
(7)找出美国死亡最少的10个州——>漏斗图
root = "test4/result7/part-00000-0891d181-56a9-4d70-a94c-259bda524607-c000.json"
data = []
with open(root, 'r') as f:
while True:
line = f.readline()
if not line: # 到 EOF,返回空字符串,则终止循环
break
js = json.loads(line)
data.insert(0,[str(js['state']),int(js['totalDeaths'])])
c = (
Funnel()
.add(
"State",
data,
sort_="ascending",
label_opts=opts.LabelOpts(position="inside"),
)
.set_global_opts(title_opts=opts.TitleOpts(title=""))
)
c.load_javascript()
c.render_notebook()
(8)美国的病死率—>饼状图
root = "test4/result8/part-00000-47009151-50c4-4bb2-acb1-ddc2e101f6e2-c000.json"
values = []
with open(root, 'r') as f:
while True:
line = f.readline()
if not line: # 到 EOF,返回空字符串,则终止循环
break
js = json.loads(line)
if str(js['state'])=="USA":
values.append(["Death(%)",round(float(js['deathRate'])*100,2)])
values.append(["No-Death(%)",100-round(float(js['deathRate'])*100,2)])
c = (
Pie()
.add("", values)
.set_colors(["blcak","orange"])
.set_global_opts(title_opts=opts.TitleOpts(title="全美的病死率"))
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
)
c.load_javascript()
c.render_notebook()
四、遇到的问题
1.找不到spark
在开头加上下面两行代码即可
import findspark
findspark.init()
2.找不到python
查看日志发现不是master中找不到python,而是slave中没找到,然后发现slave中没有安装python,在两个slave中按照第一步安装anaconda即可