ComfyUI手部修复讲解

一、下载插件

comfyui_controlnet_aux

ComfyUI的ControlNet辅助预处理器

https://github.com/Fannovel16/comfyui_controlnet_aux

里面有一个节点叫MeshGraphormer hand refiner,用于检测手部

二、下载MeshGraphormer hand refiner节点依赖

检测手部,输出手部深度图

原理
https://www.runcomfy.com/comfyui-nodes/comfyui_controlnet_aux/MeshGraphormer-DepthMapPreprocessor

第一次使用工作流需要下载其他库(控制台会自行下载)

我实测有一个库自行下载错误(可能我用的管理员用户)

no module named 'mediapipe'

解决办法

使用comfyui的内置python进行手动下载依赖

E:\Comfyui\python_embeded>python -m pip install mediapipe --user

安装预处理器

1. hrnetv2_w64_imagenet_pretrained.pth
2. graphormer_hand_state_dict.bin
放在E:\Comfyui\ComfyUI\custom_nodes\comfyui_controlnet_aux\ckpts\hr16\ControlNet-HandRefiner-pruned目录下

如果没有目录自行创建,或者在第一次运行工作流时,它会自动帮我们下载

三、下载controlnet重绘手部处理model

  • control_sd15_inpaint_depth_hand_fp16.safetensors
放在E:\Comfyui\ComfyUI\models\controlnet目录下

安装完以上插件和model之后,记得重启comfyui

四、节点设置

  1. 上传图片,使用MeshGraphormer hand refiner节点检测手部
  2. 使用VAE Encode (for Inpainting)将手部变成潜在空间数据
  3. controlnet重绘手部
  4. ksample去噪
  5. 生成修复好的图片

网盘资源

我用夸克网盘分享了「ComfyUI教程」,点击链接即可保存。打开「夸克APP」,无需下载在线播放视频,畅享原画5倍速,支持电视投屏。
链接:https://pan.quark.cn/s/274b451a3072

视频讲解

b站视频

https://www.bilibili.com/video/BV1SVsfevE8i/?spm_id_from=333.999.list.card_archive.click&vd_source=f7ba66eceb00e4805d1897131c92dd15

### ComfyUI 手部修复功能实现方法 在ComfyUI中,手部修复主要依赖于特定的工作流和节点配置来完成。对于希望提升图像中手部质量或进行手部细节优化的任务来说,可以采用以下流程: #### 节点准备与环境搭建 确保已经安装了必要的插件和支持的手部修复模型。这通常涉及到`MeshGraphormer hand refiner`节点以及其他辅助组件的引入[^3]。 #### 图像输入与预处理 上传待处理的图片到ComfyUI平台,并通过指定节点对手部区域进行识别。此过程利用专门设计用于捕捉人体结构特征的技术,能够精准定位并框定需要增强的部分。 ```python # 使用Python伪代码表示逻辑流程而非实际执行代码 image_input = load_image("path_to_your_image") # 加载原始图片 hand_detection_result = apply_hand_detector(image_input) # 应用手部检测器获取结果 ``` #### 数据转换至潜在空间 为了便于后续操作,在这一阶段需将标记后的手部图像编码进入潜在向量形式,以便更好地控制修改效果。这里会用到`VAE Encode (for Inpainting)`这样的工具来进行转化。 ```python latent_representation_of_hand = encode_into_latent_space(hand_detection_result) ``` #### 控制网络重绘与降噪 借助ControlNet技术重新绘制被选中的手部区域,同时应用K-Sample算法减少可能产生的噪声干扰,从而获得更加自然流畅的结果。 ```python refined_hand_image = control_net_redraw_and_denoise(latent_representation_of_hand) final_output = decode_from_latent_space(refined_hand_image) # 将潜变量解码回图像域 save_or_display(final_output) # 存储最终输出或是显示给用户查看 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值