题目描述
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。
请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
你可以假设 nums1 和 nums2 不会同时为空。
示例 1:
nums1 = [1, 3]
nums2 = [2]
则中位数是 2.0
示例 2:
nums1 = [1, 2]
nums2 = [3, 4]
则中位数是 (2 + 3)/2 = 2.5
解题思路
需要时间复杂度为O(log(m+n)),所以应该使用二分法来查找,在两个未合并的有序数组中查找中位数,迭代形式的二分法查找
代码如下
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int m = nums1.size(), n = nums2.size();
if (m < n) return findMedianSortedArrays(nums2, nums1);
if (n == 0) return ((double)nums1[(m - 1) / 2] + (double)nums1[m / 2]) / 2.0;
int left = 0, right = n * 2;
while (left <= right) {
int mid2 = (left + right) / 2;
int mid1 = m + n - mid2;
double L1 = mid1 == 0 ? INT_MIN : nums1[(mid1 - 1) / 2];
double L2 = mid2 == 0 ? INT_MIN : nums2[(mid2 - 1) / 2];
double R1 = mid1 == m * 2 ? INT_MAX : nums1[mid1 / 2];
double R2 = mid2 == n * 2 ? INT_MAX : nums2[mid2 / 2];
if (L1 > R2) left = mid2 + 1;
else if (L2 > R1) right = mid2 - 1;
else return (max(L1, L2) + min(R1, R2)) / 2;
}
return -1;
}
};