【Transfer Learning】Adversarial Discriminative Domain Adaptation

Adversarial Discriminative Domain Adaptation这篇论文正式发表于2017的CVPR,但在2017年的ICLR的Workshop中就已经展露了头角,主要详细的讨论了在Domain Adaptation(即DA领域)中将生成对抗的想法如何更好的融入进来, 实现1+1>2的效果。按照惯例,我们先来看一下写这篇论文的大佬们和他们所属的机构。
在这里插入图片描述

一作:Eric Tzeng,University of California Berkeley——作为被引量将近1000的ADDA这篇论文的一作,Eric Tzeng功不可没,来自Berkeley大学的Eric Tzeng也是在Transfer Task、Cross-Domain、DA等方向研究的大佬。例如,DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition这篇论文的被引用量超3000,感兴趣的小伙伴们可以关注一下Eric Tzeng
二作:Judy Hoffman,Stanford University——主要的方向是聚焦于计算机视觉和机器学习,近几年的论文基本集中在Transfer Task、Multi-Source Adaptation等方向,有兴趣的伙伴可以关注一下Judy Hoffman的主页

【论文地址】Adversarial Discriminative Domain Adaptation
【论文翻译】Adversarial Discriminative Domain Adaptation-简书(汉堡薯条嘿嘿嘿)


1 Introduction 介绍

我们已知,深度学习算法的成功依赖于深度学习数据集的发展,但是数据集同时为模型的泛化能力产生了壁垒(因为在A数据集上训练出来的模型可能在B数据集上表现较差),因而我们知道在不同的数据集上存在domain shift或者是database bias,即域漂移或者数据集偏移。 在domain shift小的情况下,模型的泛化能力较好,而在domain shift大的情况下,模型的泛化能力偏弱。基础的方法就是Fine-tune一下这个模型,然而在deep learning模型中存在着大量的参数,并且很难获得足够的标注,所以fine-tune的表现有时会比较普通。DA的方法目的是缩小domain shift带来的负面影响。 目前方法常用的有两种,一个是优化domain shift的评价指标,例如MMD,相似度距离等;另一个从源域重构目标域。

对抗学习与迁移学习的融合是当前迁移学习领域中的一个热点,一些方法通过将对抗学习用于无监督域适应,确实减少了源域和目标域之间的差异,并提高了泛化能力。 其中也存在一些改进的地方,比如CoGAN对源域和目标域之间不太相似的情况下表现一般,会导致梯度的逐渐消失、使用权值共享的对称映射使得源分类器表现很棒,但是在多源域的情况下表现就不好。在论文的实验中,CoGAN就很难收敛。

在这项工作中,我们提出了一个新的对抗域适应的统一框架,使我们能够有效地研究现有方法之间差异的不同因素,并清楚地看到它们各自的相似性。 我们的框架统一了设计选择,例如权重分配,基本模型和对抗性损失,并包含了以前的工作,同时也促进了对现有实例进行改进的新颖实例的设计。特别是,我们观察到输入图像分布的生成模型不是必需的,因为最终的任务是学习判别式表示。另一方面,与对称特征相比,非对称映射可以更好地建模低级特征的差异。因此,我们提出了一种以前未曾探索过的,无监督的对抗性适应方法,即对抗性区分域自适应(Adversarial Discriminative Domain Adaptation,ADDA)。ADDA首先使用源域中的标签来学习区分表示,然后使用一种单独的编码来映射目标,使用通过域对抗损失获悉的非对称映射将数据传输到同一空间,在很多数据集上都表现不错。

2 Generalized adversarial adaptation 广义对抗适应

先来明确源域、目标域一些可能用到的名词表示:

图像 Images 标签 Labels 分布 Distribution 特征表示 Representation 分类器 Classifier
源域 Source Domain X s X_s Xs Y s Y_s Ys
  • 2
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值