热传导方程节点划分及边界节点的处理

该博客探讨了傅里叶定律在热传导方程中的应用,详细阐述了第一类、第二类和第三类边界条件,并介绍了如何处理边界节点,特别是在非稳态热传导方程的差分解法中,通过能量守恒原则推导出边界层下一时刻的温度表达式。文章还提到了迭代和追赶法作为求解内部温度分布的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

傅里叶定律(热传导定律)
						q= -λ ∂T/∂t
			表示单位时间内通过单位面积的热量的大小,温度梯度的反方向
三类边界条件:
  • 第一类边界条件:已知表面温度
  • 第二类边界条件:已知边界上的热流变化规律,即温度沿边界法线方向的导数,称为第二类边界条件,表达式如下:
    q=-λ ∂T/∂t
  • 第三类边界条件:已知边界气流温度及对流换热系数
    1、 非稳态热传导方程:左边体现温度随时间变化,右边体现了物体内部温度传导过程:
    ρc ∂T/∂t=(∂T^2)/(∂z^2 )

要求解一个实际的温度场分布需要:

温度场分布 = 热传导方程 + 单值性条件

单值性条件一般指三类边界条件、初始条件等
求解方法: 有限元法、数值解法、有限差分法
采用有限差分法差分后:
T(p,k)=T(p,k-1)+ Δλ/ρc•(T(p-1,k-1)-2T(p,k-1)+T(p+1,k-1))/〖Δz〗^2
控制容积法划分网格:利用中心点作为温度节点的中心,节点位于子区域的中心.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值