数学--数论--(逆元)扩展欧几里求解+证明

欧几里得与扩展欧几里得

先解释一下符号:

A ≡ B ( m o d C ) 符 号 代 表 A 模 C 与 B 模 C 相 等 , 即 A / C 与 B / C 同 余 。 A≡B (mod C)符号代表A模C与B模C相等,即A/C与B/C同余。 ABmodCACBCA/CB/C

i n v ( a ) 代 表 a 的 逆 元 inv(a)代表a的逆元 invaa

定义:
b ∗ b − 1 ≡ 1 ( m o d c ) , 那 么 称 b − 1 为 b 模 c 的 乘 法 逆 元 。 b ∗b^{-1}≡1 (mod c) ,那么称b^-1^为b模c的乘法逆元。 bb11(modc)b1bc
则 I n v ( b ) = b − 1 则Inv(b)=b^{-1} Invb=b1

定理:

a b ( m o d c ) = a ∗ i n v ( b ) ( m o d c ) 成 立 的 条 件 是 i n v ( b ) 存 , 在 即 b 与 c 互 质 。 \frac{a}{b}\pmod{c}=a*inv(b)\pmod{c}成立的条件是inv(b)存,在即b与c互质。 ba(modc)=ainv(b)(modc)inv(b)bc

用途:

乘法逆元可以用来求解部分除法的取模问题(分母是一个整数,并且与被取模数互质)
b ∗ b − 1 ≡ 1 ( m o d c ) b ∗b^{-1}≡1 (mod c) bb11(modc) 可 以 转 化 为 使 用 拓 展 欧 几 里 得 求 解 b x + c y = 1 的 解 , 求 解 x 即 为 b 的 逆 元 可以转化为使用拓展欧几里得求解bx+cy=1的解, 求解x即为b的逆元 使bx+cy=1xb
证明:
学数论不证明,是不能锻炼逻辑思维能力的。

因 为 a ∗ i n v ( a ) ≡ 1 ( m o d c ) 所 以 设 a ∗ i n v ( a ) = k ∗ c + 1 移 项 得 a ∗ i n v ( a ) − k ∗ c = 1 取 K = − k 得 a ∗ i n v ( a ) + K ∗ c = 1 因为 a*inv(a)≡1(modc)\\ 所以设 a*inv(a)=k*c+1\\ 移项得 a*inv(a)-k*c=1\\ 取K=-k得 a*inv(a)+K*c=1 ainv(a)1(modc)ainv(a)=kc+1ainv(a)kc=1K=kainv(a)+Kc=1
原结论得证

小技巧:
但是这里的inv(a)可能解除负值,我们可以再加上c来保证他是正整数

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值