需求简单描述即,我的dataframe列顺序是:col1=[‘a’,‘b’,‘c’,‘d’,‘e’,‘f’],我想让它变成:col2=[‘c’,‘a’,‘b’,‘d’,‘e’,‘f’],即’c’列提到最前面。
首先想到:
直接指定列的顺序
df = df[['c','a','b','d','e','f']]
or
df=df.loc[:,cols]
df.loc[:,cols]的操作过程就是:获取所有的行,按照cols列表来依次取原data的列,得到新的DataFrame赋给新的变量df。
ps:python错误:ix()以及 iloc()和loc()的区别
这种方法可行,前提是已知所有的列名,并且列不多,不会太麻烦。但是我的代码中,随着数据库的更新,列会有增加,这种直接指定列顺序的方法下次运行就会报错。
使用insert()
因此,代码可以需要得到所有列,然后先除去’c’列,再将其提到最前,其实用insert()一行代码就可以实现。
- 获取DataFrame列标签
columns = list(df_merge)
- 改变列顺序(使用index,pop,insert)
【app_no提到第一列】
# move the column to head of list using index, pop and insert
columns.insert(0, columns.pop(columns.index('app_no')))
insert方法:
1.功能: insert()函数用于将指定对象插入列表的指定位置。
2.语法: list.insert(index, obj)
3.参数 :index: 对象obj需要插入的索引位置。 obj: 插入列表中的对象。
- 利用loc获取新的DataFrame,拷贝交换顺序后的DataFrame
# use loc to reorder
df_merge = df_merge.loc[:, columns]
df_merge
参考博客:https://www.cnblogs.com/zhoudayang/p/5414020.html
https://blog.csdn.net/qq_36523839/article/details/80094541