中序和先序、中序和后序

中序和后序

Lnode CreateBTree(char inOd[], char postOd[], int n)
{
    if (n == 0)
        return nullptr;
    Lnode btRoot = new Node;
    btRoot->data = postOd[n-1];     //后序序列最后一个元素一定是根节点
    char lInOd[MAX_SIZE], rInOd[MAX_SIZE];
    char lPostOd[MAX_SIZE], rPostOd[MAX_SIZE];
    int n1, n2;
    n1 = n2 = 0;
    //根据根节点将中序序列分为左子树和右子树
    for (int i = 0; i < n; i++)
    {
        if (i <= n1 && inOd[i] != btRoot->data)
            lInOd[n1++] = inOd[i];
        else if (inOd[i] != postOd[n-1])//跳过根结点
            rInOd[n2++] = inOd[i];
    }
    //根据一个树的后序序列的长度等于中序序列且后序遍历是先左子树再右子树
    //将后序序列分为左子树和右子树
    int m1, m2;
    m1 = m2 = 0;
    for (int i = 0; i < n-1; i++)
    {
        if (i < n1)
            lPostOd[m1++] = postOd[i];
        else
            rPostOd[m2++] = postOd[i];
    }
    btRoot->lchild = CreateBTree(lInOd, lPostOd, n1);
    btRoot->rchild = CreateBTree(rInOd, rPostOd, n2);
    return btRoot;
}

在这里插入图片描述

先序和中序

#include<iostream>
using namespace std;
#define MAX_SIZE 1000
typedef struct Node{
    char data;
    struct Node *lchild,*rchild;
}Node,*Lnode;
typedef struct LinkNode
{
    Node data;
    struct LinkNode *next;
}LinkNode;
//这个表示队列的数据结构中只有front和rear
typedef struct LinkQueue{
    LinkNode *front,*rear;
}LinkQueue;



Lnode CreateBTree(char *Pre,char * In,int length);
void PreOrder(Lnode root);
//void LevelOrder(Lnode root);
/*void visit(Lnode node);
void InitQueue(LinkQueue & Q);
bool isEmpty(LinkQueue Q);
void EnQueue(LinkQueue &Q,Node  x);
bool DeQueue(LinkQueue & Q,Node & x);*/


int main()
{
    Lnode root=nullptr;
    char Pre[MAX_SIZE],In[MAX_SIZE];
    char ch;
    int n = 0;
    while((ch=getchar())&&ch!='\n')
        Pre[n++] = ch;
    n=0;
    while((ch=getchar())&&ch!='\n')
        In[n++] = ch;
    root = CreateBTree(Pre, In, n);
    //LevelOrder(root);
    PreOrder(root);
    return 0;
}

Lnode CreateBTree(char* Pre,char* In,int length)
{
    if(length==0)
        return nullptr;
    Lnode root = new Node;
    root->data = Pre[0];
    int n1,n2;
    n1 = n2 =0;
    char  lPre[MAX_SIZE],rPre[MAX_SIZE],lIn[MAX_SIZE],rIn[MAX_SIZE];
    //中序序列分组
    for (int i = 0; i < length; i++)
      {
          if (i <= n1 && In[i] != root->data)
              lIn[n1++] = In[i];
          else if (In[i] != root->data)
              rIn[n2++] = In[i];
      }
   /*while(In[n]!=root->data)
    {
        lIn[n1++]=In[n++];
    }
    n++;
    while(n<length)
    {
        rIn[n2++]=In[n++];
    }*/
    //前序序列分组
    int m1,m2;
    m1 = m2 =0;
    /*while(n<length)
    {
       if(n<=n1)
           lPre[m1++] = Pre[n++];
        rPre[m2++] = Pre[n++];
    }
     */
    for(int i = 1;i < length;i++)
    {
        if(i < n1)
            lPre[m1++] = Pre[i];
        else
            rPre[m2++] = Pre[i];
    }
    root->lchild = CreateBTree(lPre,lIn,n1);
    root->rchild = CreateBTree(rPre,rIn,n2);
    return root;
}
 



void PreOrder(Lnode root)
{
    if(root==nullptr)
        return;
    cout<<root->data<<" ";
    PreOrder(root->lchild);
    PreOrder(root->rchild);
    
}

也不知道为啥???没看出来在这里插入图片描述

参与评论 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:像素格子 设计师:CSDN官方博客 返回首页

打赏作者

很注重数学和821

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值