图像处理、分析与机器视觉
pudding_art
这个作者很懒,什么都没留下…
展开
-
计算机器视觉(十四)运动恢复结构
Structure from Motion(sfm)恢复三维结构和摄像机参数。如果给了摄像机参数m和m‘,p和p’的对应关系,就可以用最小化的方法求解出来。运动恢复结构的应用三角化:3dmarks可以进行处理的运动恢复结构可以知道摄像机的位姿,可以定位出机器人在空间内的位置可以进行控制。可以从互联网的海量图片进行三维场景重建:slam:同时定位以及建图,能够知道三维场景的地图并定位自己,slam是一个视频序列,图片是连续的,sfm通常比较慢,slam会简化某些步骤,但是精度没有sfm快。数原创 2020-07-18 12:43:03 · 1798 阅读 · 2 评论 -
计算机器视觉(九)
中层处理,不处理像素级别的了。Segmentation分割是为了找到主体,这样进行分析就更加容易了。过分割:把一个完整的物体分成好几个欠分割:把不同的物体分成一个了图像分割的目标超像素:把一个图中相似的地方都放到一起,每个区块中的语义相似,这样就不需要处理每个像素点,表达更加简洁。Bottom-up process利用底层像素的相似性进行连接。Unsupervised(无监督的)利用语义的相似性进行分割人是Bottom-up和top-down结合,supervised 和un.原创 2020-07-06 14:44:35 · 522 阅读 · 0 评论 -
计算机器视觉(十二)
三维重建-摄像机模型原创 2020-07-10 08:46:18 · 340 阅读 · 0 评论 -
计算机器视觉(十三)
摄像机标定&三维重建基础&极几何原创 2020-07-14 08:54:09 · 293 阅读 · 0 评论 -
计算机器视觉(十一)
目标检测原创 2020-07-09 10:51:51 · 328 阅读 · 0 评论 -
计算机器视觉(十)
补:那个在Mean shift中的移动是在大圈里面再画一个小圈,然后在小圈里的点一起同时移动到最后的中心。识别&词袋模型原创 2020-07-06 17:45:10 · 470 阅读 · 0 评论 -
计算机器视觉(八)
SIFT特征(续)不会影响是否是尺度不变点,但是影响圆的大小,只要有尺度不变点,无论大小都能找到。(covariance)灰度变化是否会改变呢??上面两个图中的内容是对应不上的,究其原因是因为对视角的变化是无法作出正确的判断的,视角变了之后信号就变了。所以两个⭕️中的东西是对应不上的,所以更希望这两个圆具有自适应性。加了仿射变换的SIFT特征对于一个圆形的东西,lambda在两个方向变化的速度是一样的。把上面图像中的两个圆中的像素拿出来计算两个圆中像素的M矩阵,然后找到信号变化最快的两个方原创 2020-07-06 07:07:29 · 470 阅读 · 1 评论 -
计算机器视觉(七)
尺度不变区域与SIFT特征如上图,无论圆的大小都可以将其检测出来。不考虑尺度和远近。两个圆中的内容是一样的虽然大小不同,尺度不变的covariance。前面提出先对图像进行边缘提取使用高斯卷积,高斯卷积实际上做了两件事情一件是高斯平滑一件是求导,看导数最大点对应边缘。高斯二阶导也可以求边缘,当二阶导为0的时候就是边缘,对于高斯二阶导也可以称作是Laplacian和,首先用二阶过零点检测边缘,但是实际上没有用这个判断边缘。首先也是进行平滑处理,然后使用高斯二阶导得出最后一个图的相应结果。高斯一原创 2020-07-04 16:40:28 · 409 阅读 · 0 评论 -
计算机器视觉(五)
Hough transform补充如果这里的(x,y)的方向不给定的话,每确定一个半径r的值就会在image space上画出一个圆,那假设现在确定的r之一是r0,那(x,y)在Hough parameter space上进行投票就是一个圆(也就是一个点对应一个圆),那么整个image space中的圆上的所有点(x,y)对应的就是Hough parameter space中的一个锥面。每个点一个锥体????【为啥】这里有两个方法:左侧空间上的每个位置给给右边的空间画一个圆,然后在右边的空间上看原创 2020-07-03 11:16:24 · 531 阅读 · 0 评论 -
边缘填充方法的实现
主要使用numpy中的pad实现数据填充Array:待填充的数组pad_width:Number of values padded to the edges of each axis.在当前的数据上下左右要填充的数据的个数(填充的形状)mode :不同的填充方法一维数组填充import numpy as nparr1D = np.array([1, 2, 3, 4, 5, 6])'''不同的填充方法'''print 'constant: ' + str(np.pad(arr1D, (2,原创 2020-06-22 11:13:33 · 867 阅读 · 0 评论 -
计算机器视觉(四)
拟合拟合所面临的问题首先要考虑的就是噪声点,本来不是属于这个位置上的点现在在这个位置上,第二个要考虑的是外点,就是本来和这个边缘毫无关系的点却对这个边缘产生了影响,第三个要考虑的就是缺失的数据。所有的点都是属于直线上的如何求方程呢?最小二乘法(每次角度的转变,点和线的位置是变化的),一个是全最小二乘(一个是沿着外方向的最短,一个是点到直线的距离最短)(点和线的相对位置关系不会随着视角的改变而改变)首先给出一个损失函数,给出目前的点和现在的直线的关系,然后对参数进行优化,最后得到的直线就是最终的函原创 2020-06-20 11:12:21 · 560 阅读 · 0 评论 -
计算机器视觉(三)边缘提取常见算子、Canny算子边缘提取及边界拟合
边缘能够紧凑的表达图像里的内容信息边的提取使用倒数,为极值的时候为边缘边缘提取与拟合另一种定义边缘的方式Prewitt:对左右点的单点噪声不太敏感,将自身考虑乘0,左右两侧分别是-1和1,否则[-1,1]这种如果单点噪声严重则不准确。Sobel:将矩阵拆分为两个[1,2,1]T 和[-1,0,1],前面的是高斯核,后面的是边缘提取,也就是说在边缘提取之前先做了一个平滑处理。这个核是可分离的,Sobel算子受到的影响更小。Roberts:Mx检测的是135度方向的线,而My检测的是45度放方.原创 2020-06-18 10:15:24 · 4202 阅读 · 0 评论 -
计算机器视觉(二)图像的卷积操作、不同噪声对应降噪方法、边缘提取 初步
卷积Types of Images常见的图像类型有哪些?二进制图像、灰度图像、彩色图像Binary image representation二进制图像元素要么是1,要么是0,要么是黑要么是白。Grayscale image representation每个元素的图像取值范围是0-255,代表不同的灰度。Color image representation彩色图像一个点有RGB三个通道表示,每个通道是0-255,可以代表RGB的每种通道的不同取值范围(或者BGR)Motivation原创 2020-06-17 17:44:48 · 3100 阅读 · 3 评论 -
计算机器视觉(一)
背景介绍学习路线原创 2020-06-17 15:02:10 · 249 阅读 · 0 评论 -
图像处理、分析与机器视觉(一)
图像表达按数据的组织可粗略的分为4层(思维导图补充)图像理解自底向上的信息处理方式,从几乎无抽象的信号,到更高的抽象描述。⚠️信息流并非需要是无向的,时常会引入反馈回路以便根据中间结果修改算法。...原创 2020-06-10 17:34:57 · 547 阅读 · 0 评论