1、Indoor PDR Positioning Assisted by Acoustic Source Localization, and Pedestrian Movement Behavior Recognition, Using a DualMicrophone Smartphone
-
总结:对每种步态的行人行为进行识别,并根据识别结果改进PDR定位的步长估计,以减少PDR定位算法中的误差累积。
-
涉及到的传感器:
-
通过TYPE_ORIENTATION获得手机俯仰和旋转角度,进而获得手机姿态
-
通过加速度和角速度得到行为特征
-
改进方法:确定不同行为状态和手机姿态下α、β,代入步长估计方程 Stride Length = α · f + β · σ2 + γ
2、Activity Recognition and Semantic Description for Indoor Mobile Localization
总结:结合人体行为识别(HAR)、行人航位推算(PDR)、地标进行室内定位,从室内地图中提取地标信息,然后使用 HAR 检测地标。然后使用这些地标来校正 PDR 轨迹并实现高精度。马尔可夫模型(HMM)推断用户初始位置,通过检测用户的活动,进一步为地标分配语义描述