最大正方形模型

前言

最大正方形是一类常见的动态规划模型,在各大算法竞赛中经常会出现它的变体,研究该问题的解决思路是非常重要的。

例一:最大正方形

题意

在一个 n ∗ m n*m nm的只包含 0 0 0 1 1 1的矩阵里找出一个不包含 0 0 0的最大正方形,输出边长。

数据范围

1 ≤ n , m ≤ 100 1 \leq n,m \leq 100 1n,m100

思路

f ( i , j ) f(i,j) f(i,j)表示以 ( i , j ) (i,j) (i,j)点为右下角的正方形的最大边长,如果 ( i , j ) (i,j) (i,j)点为 0 0 0的话,那么 f ( i , j ) = 0 f(i,j) = 0 f(i,j)=0
我们可以考虑以 ( i , j ) (i,j) (i,j)点为右下角的最大正方形与哪些正方形有关,以及它们之间的关系如何。通过画图可以得出如下结论,以 ( i , j ) (i,j) (i,j)为右下角的最大正方形只与 ( i − 1 , j ) , ( i , j − 1 ) , ( i − 1 , j − 1 ) (i-1,j),(i,j-1),(i-1,j-1) (i1,j),(i,j1),(i1,j1)有关。
f ( i , j ) = m i n ( f ( i − 1 , j ) , f ( i , j − 1 ) , f ( i − 1 , j − 1 ) ) + 1 f(i,j) = min(f(i-1,j),f(i,j-1),f(i-1,j-1)) + 1 f(i,j)=min(f(i1,j),f(i,j1),f(i1,j1))+1

代码

#include <iostream>
#include <cstdio>
#include <cstring>

using namespace std;

const int N = 110;

int n, m;
int a[N][N], f[N][N];

int main()
{
    cin >> n >> m;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            cin >> a[i][j];
    
    int ans = 0;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
        {
            if(a[i][j] == 1)
            {
                f[i][j] = min(f[i-1][j],min(f[i][j-1],f[i-1][j-1])) + 1;
                ans = max(ans,f[i][j]);
            }
        }
    
    cout << ans << endl;
    return 0;
}

例二:最大正方形II

题意

有一个矩阵,由 n ∗ m n*m nm个格子组成,这些格子由两种颜色构成,黑色和白色。请找到边长最长的且内部是黑白交错(即两个相连的正方形颜色不能相同)的正方形。输出边长。

数据范围

1 ≤ n , m ≤ 1500 1 \leq n,m \leq 1500 1n,m1500

思路

状态表示和上题一样,计算过程中加一个分类讨论即可。
如果当前格是黑格,那么只有上、左两个格子为白格,左上为黑格,状态方程才可以被转移。如果当前格为白格,那么相反。

代码

#include <iostream>
#include <cstdio>
#include <cstring>

using namespace std;

const int N = 1510;

int n, m;
int w[N][N], f[N][N];

int main()
{
    cin >> n >> m;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            cin >> w[i][j];
    
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
        {
            if(w[i][j]==1)
            {
                if(w[i-1][j]==0&&w[i][j-1]==0&&w[i-1][j-1]==1) f[i][j] = min(f[i-1][j],min(f[i][j-1],f[i-1][j-1])) + 1;
                else f[i][j] = 1;
            }
            else
            {
                if(w[i-1][j]==1&&w[i][j-1]==1&&w[i-1][j-1]==0) f[i][j] = min(f[i-1][j],min(f[i][j-1],f[i-1][j-1])) + 1;
                else f[i][j] = 1;
            }
        }
    
    int ans = 0;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            ans = max(ans, f[i][j]);
    
    cout << ans << endl;
    return 0;
}

例三:Rarity and New Dress

题意

在一个 n ∗ m n*m nm的矩阵中,找有多少个由相同字符组成,角度为45°的菱形。

数据范围

1 ≤ n , m ≤ 2000 1 \leq n,m \leq 2000 1n,m2000

思路

f ( i , j ) f(i,j) f(i,j)为以 ( i , j ) (i,j) (i,j)为最下边的菱形的最大边长,那么答案即为 Σ f ( i , j ) \Sigma f(i,j) Σf(i,j)
子状态为 i − 1 i-1 i1行的三个以及 i − 2 i-2 i2行的一个,状态转移方程为: m i n ( f ( i − 1 , j ) , f ( i − 1 , j − 1 ) , f ( i − 1 , j + 1 ) , f ( i − 2 , j ) ) + 1 min(f(i-1,j),f(i-1,j-1),f(i-1,j+1),f(i-2,j)) + 1 min(f(i1,j),f(i1,j1),f(i1,j+1),f(i2,j))+1

代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

typedef long long ll;
const int N = 2010;

int f[N][N];
char s[N][N];

int main(){
    int n,m;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)scanf("%s",s[i]+1);
    ll ans = 0;
    for(int ch=0;ch<26;ch++)
        for(int i=1;i<=n;i++)
            for(int j=1;j<=m;j++)
            {
                f[i][j] = 0;
                if(s[i][j]==ch+'a') f[i][j] = 1;
                if(i>=3&&s[i][j]==ch+'a') f[i][j] = min(min(f[i - 1][j],f[i - 1][j - 1]),min(f[i - 2][j],f[i - 1][j + 1])) + 1;
                ans += f[i][j];
            }

    printf("%lld\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值