前言
最大正方形是一类常见的动态规划模型,在各大算法竞赛中经常会出现它的变体,研究该问题的解决思路是非常重要的。
例一:最大正方形
题意
在一个 n ∗ m n*m n∗m的只包含 0 0 0和 1 1 1的矩阵里找出一个不包含 0 0 0的最大正方形,输出边长。
数据范围
1 ≤ n , m ≤ 100 1 \leq n,m \leq 100 1≤n,m≤100
思路
f
(
i
,
j
)
f(i,j)
f(i,j)表示以
(
i
,
j
)
(i,j)
(i,j)点为右下角的正方形的最大边长,如果
(
i
,
j
)
(i,j)
(i,j)点为
0
0
0的话,那么
f
(
i
,
j
)
=
0
f(i,j) = 0
f(i,j)=0。
我们可以考虑以
(
i
,
j
)
(i,j)
(i,j)点为右下角的最大正方形与哪些正方形有关,以及它们之间的关系如何。通过画图可以得出如下结论,以
(
i
,
j
)
(i,j)
(i,j)为右下角的最大正方形只与
(
i
−
1
,
j
)
,
(
i
,
j
−
1
)
,
(
i
−
1
,
j
−
1
)
(i-1,j),(i,j-1),(i-1,j-1)
(i−1,j),(i,j−1),(i−1,j−1)有关。
f
(
i
,
j
)
=
m
i
n
(
f
(
i
−
1
,
j
)
,
f
(
i
,
j
−
1
)
,
f
(
i
−
1
,
j
−
1
)
)
+
1
f(i,j) = min(f(i-1,j),f(i,j-1),f(i-1,j-1)) + 1
f(i,j)=min(f(i−1,j),f(i,j−1),f(i−1,j−1))+1
代码
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = 110;
int n, m;
int a[N][N], f[N][N];
int main()
{
cin >> n >> m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
cin >> a[i][j];
int ans = 0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
if(a[i][j] == 1)
{
f[i][j] = min(f[i-1][j],min(f[i][j-1],f[i-1][j-1])) + 1;
ans = max(ans,f[i][j]);
}
}
cout << ans << endl;
return 0;
}
例二:最大正方形II
题意
有一个矩阵,由 n ∗ m n*m n∗m个格子组成,这些格子由两种颜色构成,黑色和白色。请找到边长最长的且内部是黑白交错(即两个相连的正方形颜色不能相同)的正方形。输出边长。
数据范围
1 ≤ n , m ≤ 1500 1 \leq n,m \leq 1500 1≤n,m≤1500
思路
状态表示和上题一样,计算过程中加一个分类讨论即可。
如果当前格是黑格,那么只有上、左两个格子为白格,左上为黑格,状态方程才可以被转移。如果当前格为白格,那么相反。
代码
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = 1510;
int n, m;
int w[N][N], f[N][N];
int main()
{
cin >> n >> m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
cin >> w[i][j];
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
if(w[i][j]==1)
{
if(w[i-1][j]==0&&w[i][j-1]==0&&w[i-1][j-1]==1) f[i][j] = min(f[i-1][j],min(f[i][j-1],f[i-1][j-1])) + 1;
else f[i][j] = 1;
}
else
{
if(w[i-1][j]==1&&w[i][j-1]==1&&w[i-1][j-1]==0) f[i][j] = min(f[i-1][j],min(f[i][j-1],f[i-1][j-1])) + 1;
else f[i][j] = 1;
}
}
int ans = 0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
ans = max(ans, f[i][j]);
cout << ans << endl;
return 0;
}
例三:Rarity and New Dress
题意
在一个 n ∗ m n*m n∗m的矩阵中,找有多少个由相同字符组成,角度为45°的菱形。
数据范围
1 ≤ n , m ≤ 2000 1 \leq n,m \leq 2000 1≤n,m≤2000
思路
f
(
i
,
j
)
f(i,j)
f(i,j)为以
(
i
,
j
)
(i,j)
(i,j)为最下边的菱形的最大边长,那么答案即为
Σ
f
(
i
,
j
)
\Sigma f(i,j)
Σf(i,j)。
子状态为
i
−
1
i-1
i−1行的三个以及
i
−
2
i-2
i−2行的一个,状态转移方程为:
m
i
n
(
f
(
i
−
1
,
j
)
,
f
(
i
−
1
,
j
−
1
)
,
f
(
i
−
1
,
j
+
1
)
,
f
(
i
−
2
,
j
)
)
+
1
min(f(i-1,j),f(i-1,j-1),f(i-1,j+1),f(i-2,j)) + 1
min(f(i−1,j),f(i−1,j−1),f(i−1,j+1),f(i−2,j))+1。
代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N = 2010;
int f[N][N];
char s[N][N];
int main(){
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)scanf("%s",s[i]+1);
ll ans = 0;
for(int ch=0;ch<26;ch++)
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
f[i][j] = 0;
if(s[i][j]==ch+'a') f[i][j] = 1;
if(i>=3&&s[i][j]==ch+'a') f[i][j] = min(min(f[i - 1][j],f[i - 1][j - 1]),min(f[i - 2][j],f[i - 1][j + 1])) + 1;
ans += f[i][j];
}
printf("%lld\n",ans);
return 0;
}