蓝桥杯 17省赛 B8 凑包子(dp)

蓝桥杯 17省赛 B8 凑包子(dp)

标题:包子凑数

小明几乎每天早晨都会在一家包子铺吃早餐。他发现这家包子铺有N种蒸笼,其中第i种蒸笼恰好能放Ai个包子。每种蒸笼都有非常多笼,可以认为是无限笼。

每当有顾客想买X个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有X个包子。比如一共有3种蒸笼,分别能放3、4和5个包子。当顾客想买11个包子时,大叔就会选2笼3个的再加1笼5个的(也可能选出1笼3个的再加2笼4个的)。

当然有时包子大叔无论如何也凑不出顾客想买的数量。比如一共有3种蒸笼,分别能放4、5和6个包子。而顾客想买7个包子时,大叔就凑不出来了。

小明想知道一共有多少种数目是包子大叔凑不出来的。

输入

第一行包含一个整数N。(1 <= N <= 100)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100)

输出

一个整数代表答案。如果凑不出的数目有无限多个,输出INF。

例如,
输入:
2
4
5

程序应该输出:
6

再例如,
输入:
2
4
6

程序应该输出:
INF

样例解释:
对于样例1,凑不出的数目包括:1, 2, 3, 6, 7, 11。
对于样例2,所有奇数都凑不出来,所以有无限多个。

资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms

=================

思路:
根据欧几里得,求得组合数是否互质
每一步都可以参考之前的步骤–>老dp数组了

总结:
欧几里得:两个不互质的数,不能凑出来的数有无数个;
两数一直取余的最后的局面,如果可以整除,那么一开始就=0,不可以整除的,最后的值=1(我自己整理的…)

public class Main{
	static int[] a;
	static boolean[] dp =new boolean[1000];			//标记可凑出的数
	public static void main(String[] args) {
		init();
		Arrays.sort(a);
		//互质的两数,凑不出来的数有无数个
		for(int i =0 ;i <a.length ;i ++) for(int j =i +1 ;j <a.length ;j ++) if(!jud(a[i] ,a[j])) {System.out.println("INF"); return ;}
		dp[0] =true;
		int ans =0;
		for(int i =1 ;i <1000 ;i ++) {
			if(dp[i]) continue;
			if(i <a[0]) {ans ++; break;}				//a[]递减,小于最小因数的数无法被凑出
			for(int j =0 ;j <a.length ;j ++) 
				if(dp[i -a[j]]) {dp[i] =true; break;}	//动态规划的转移方程
			if(!dp[i]) ans ++;
		}
		System.out.println(ans);
	}
	//判断传参是否互质
	private static boolean jud(int a, int b) {
		int tmp =0;
		while(true) {
			tmp =b %a;
			if(tmp ==0) break;
			b =a;
			a =tmp;
		}
		if(a ==1) return true; else return false;
	}
	private static void init() {
		Scanner sc = new Scanner(System.in);
		int n =sc.nextInt();
		a =new int[n];
		for(int i =0 ;i <a.length ;i ++) {a[i] =sc.nextInt(); dp[a[i]] =true;}
		sc.close();
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肯尼思布赖恩埃德蒙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值