蓝桥杯 17省赛 B8 凑包子(dp)
标题:包子凑数
小明几乎每天早晨都会在一家包子铺吃早餐。他发现这家包子铺有N种蒸笼,其中第i种蒸笼恰好能放Ai个包子。每种蒸笼都有非常多笼,可以认为是无限笼。
每当有顾客想买X个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有X个包子。比如一共有3种蒸笼,分别能放3、4和5个包子。当顾客想买11个包子时,大叔就会选2笼3个的再加1笼5个的(也可能选出1笼3个的再加2笼4个的)。
当然有时包子大叔无论如何也凑不出顾客想买的数量。比如一共有3种蒸笼,分别能放4、5和6个包子。而顾客想买7个包子时,大叔就凑不出来了。
小明想知道一共有多少种数目是包子大叔凑不出来的。
输入
第一行包含一个整数N。(1 <= N <= 100)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100)
输出
一个整数代表答案。如果凑不出的数目有无限多个,输出INF。
例如,
输入:
2
4
5
程序应该输出:
6
再例如,
输入:
2
4
6
程序应该输出:
INF
样例解释:
对于样例1,凑不出的数目包括:1, 2, 3, 6, 7, 11。
对于样例2,所有奇数都凑不出来,所以有无限多个。
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
=================
思路:
根据欧几里得,求得组合数是否互质
每一步都可以参考之前的步骤–>老dp数组了
总结:
欧几里得:两个不互质的数,不能凑出来的数有无数个;
两数一直取余的最后的局面,如果可以整除,那么一开始就=0,不可以整除的,最后的值=1(我自己整理的…)
public class Main{
static int[] a;
static boolean[] dp =new boolean[1000]; //标记可凑出的数
public static void main(String[] args) {
init();
Arrays.sort(a);
//互质的两数,凑不出来的数有无数个
for(int i =0 ;i <a.length ;i ++) for(int j =i +1 ;j <a.length ;j ++) if(!jud(a[i] ,a[j])) {System.out.println("INF"); return ;}
dp[0] =true;
int ans =0;
for(int i =1 ;i <1000 ;i ++) {
if(dp[i]) continue;
if(i <a[0]) {ans ++; break;} //a[]递减,小于最小因数的数无法被凑出
for(int j =0 ;j <a.length ;j ++)
if(dp[i -a[j]]) {dp[i] =true; break;} //动态规划的转移方程
if(!dp[i]) ans ++;
}
System.out.println(ans);
}
//判断传参是否互质
private static boolean jud(int a, int b) {
int tmp =0;
while(true) {
tmp =b %a;
if(tmp ==0) break;
b =a;
a =tmp;
}
if(a ==1) return true; else return false;
}
private static void init() {
Scanner sc = new Scanner(System.in);
int n =sc.nextInt();
a =new int[n];
for(int i =0 ;i <a.length ;i ++) {a[i] =sc.nextInt(); dp[a[i]] =true;}
sc.close();
}
}