Manipulation Attacks in LDP

这篇论文深入探讨了本地差分隐私(LDP)机制的弱点,特别是它如何容易受到操纵攻击。研究发现,即使只有少量用户被攻击者控制,也能对结果产生显著影响。文章介绍了针对二元数据和大域数据的操纵攻击,提供了攻击的下界,并提出了具有弹性的协议,以抵御操纵攻击。论文还揭示了现有的LDP协议在抵御这种攻击方面存在差异,且攻击效果随隐私预算降低和用户值域增大而加剧。
摘要由CSDN通过智能技术生成

Manipulation Attacks in Local Differential Privacy

有史以来读过的最艰难的一篇论文,截至目前仍未完全明白,该论文十分具有创新性,揭示了LDP的巨大缺陷,并通过数学分析给予了详细证明

链接: Manipulation Attacks in Local Differential Privacy.

概要: 文章提出 针对非交互式的 本地的差分隐私机制十分容易受到manipulate attack
当 隐私预算较低、 或输入域较大时,manipulate 攻击可以通过仅通过控制一小部分用户,即可对结果造成很大的影响

且现有的LDP协议在易受manipulation attack 方面差异很大

1. Introduction

  1. 文章指出,manipulation attacks 对于任何的非交互式本地差分隐私机制,都有着更高程度的攻击性
    • 其他算法虽然同样可以被manipulate 但其攻击性均无在非交互式的差分隐私机制上大
    • 该非交互式本地差分隐私机制,对任意场景的问题均适用,如:均值计算、频率估计、发现频繁项、数据分布规律估计
    • 在非交互式本地差分隐私机制中,对message 进行投毒, 比对用户数据本身进行投毒来的危害更大
  2. 文章对 每个场景 给出了最优manipulation attacks ,并证明没有攻击可以比他们的危害更大。(问题具体如下图)
    • 现有的协议 在易受manipulation attack 方面差异很大image-20211219212857446
  3. manipulation attack 的攻击效果随着隐私预算的减小、用户值域的增大而增大
    • 对于每个 ε − l o c a l D P \varepsilon-local DP εlocalDP的算法, γ \gamma γ 比例的用户可以导致 Ω ~ ( d ) ε ⋅ γ \widetilde{\Omega}\frac{(\sqrt{d})}{\varepsilon}·\gamma Ω ε(d )γ e的误差

1.1 Local Differential Privacy & Threat Model

1.1.1 LDP

Parameters

  • n users, i ∈ [ n ] , x i ∈ χ i\in[n],x_i\in \chi i[n],xiχ, public random string S
  • Each user compute a m e s s a g e   y i ← R i ( x i , b ) message\ y_i\gets R_i(xi,b) message yiRixib​,其中 R i : χ × S → γ R_i:\chi\times S \to \gamma Riχ×Sγ
  • The aggregator A: z ← A ( y 1 , . . . , y n , S ) z\gets A(y_1,...,y_n,S) zA(y1,...,yn,S),其中 γ n × S → Z \gamma^n\times S\to Z γn×SZ

image-20210730103921887

如下图所示是一个经典的(非交互)本地差分隐私协议的执行过程

  • 本地数据 经过本地隐私机制R 得到扰动数据 ,本文中称为message
  • 聚合器收集扰动数据,得到最终统计结果

image-20211219211339301

1.1.2 Threaten Model

攻击者控制   γ \ \gamma  γ 比例的用户,令其发送给聚合器的扰动数据 随机 或 固定有目的 的改变

image-20210709170514210

1.2 Intuition (为什么本地协议更容易被manipulation 攻击)

image-20210709194914212

  1. Privacy Mechanism: 因为本地差分隐私机制要求每个用户的扰动数据几乎独立于他们的原始数据(输入输出近似独立),因此在原始数据x分布上差别很大的两条数据,在扰动数据message分布上将会差别很小。
  2. **Untrusted Aggregator: ** 而服务器为了从扰动数据中获得相对准确的结果,必须对扰动数据的微小变化高度敏感。而我们的manipulation attack 就是利用了服务器的高度敏感性。
    • 也就是说用户在扰动数据上微小的改变,会被服务器认做为来自不同在数据分布上差别很大的不同用的数据,从而使得服务器最终的输出结果产生巨大的误差

为什么CDP 仅限于input manipulation

因为在CDP中每个用户都是无噪声的情况下交互数据,聚合器也无需对每个数据进行校正

1.3 A Pepresentative Example: Frequency Estimation

以频率估计(一个最简单的任务)作为例子,辅助对 manipulation attack 的理解。

参数设置
  1. n 个用户, 每个用户贡献一个值,m个用户可以被攻击者掌控

  2. 用户值域[d]={1,…,d}

  3. 持有值j的用户的比例 vj

  4. 准确率计算:l1范数。 ∣ ∣ v − v ^ ∣ ∣ 1 = ∑ j = 1 d ∣ v j − v j ^ ∣ ||v-\hat{v}||_1=\sum_{j=1}^{d}|v_j-\hat{v_j}| vv^1=j=1dvjvj^

BaseLine Attacks

一个有效的攻击应该比下面的基线攻击引入更多的误差

  1. No Manipulation

    攻击者没有进行操纵发生攻击,因而最终只产生了为保证差分隐私而引入的误差

  2. Input Manipulation

    攻击者令操纵的用户改变他们的输入数据,被操纵的用户会诚实地执行协议,但他们的输入数据会被改变

    • 当被操纵者的比例为m/n时, 则攻击者可以对整体的数据分布偏离m/n

    • input manipulation 适用与所有算法,无论是否隐私

      image-20211220155542001

Manipulation Attack

对message 进行扰动

  • 对于Frequency Estimation,manipulation attack 使得总体分布偏离 m d ε n \frac{m\sqrt{d}}{\varepsilon n} εnmd
  • 对于Frequency Estimation,当 攻击者掌握了约 m ≈ n d m \approx \sqrt{nd} mnd 时,能够造成最大程度的攻击效果
The Breakdown Point

协议在保证准确性的前提下,能够忍受的最大的被破坏的用户比例

  • 对于Frequency Estimation, breakdown point是 γ = ε / d \gamma=\varepsilon/\sqrt{d} γ=ε/d
  • 6
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
局部差分隐私的操纵攻击是指攻击者试图影响隐私保护机制以获取敏感信息的行为。该攻击针对局部差分隐私机制的特性和缺点进行利用,以窃取隐私数据或干扰数据发布的结果。 局部差分隐私的目标是在保护个体隐私的前提下,提供对于整体数据集的有意义的分析结果。然而,攻击者可通过操纵自己的个体数据或其他数据的投入,来影响数据分析结果。例如,攻击者可能故意修改或篡改自己的数据,以改变数据发布的结论,或者通过协作或串通他人进行攻击。 操纵攻击的目的是干扰数据发布的结果,以推断出更多的隐私信息或获得误导性的数据分析结果。攻击者可能通过加入虚假的数据或者删除真实的数据来扰乱数据集的特性,使得发布的结果偏离真实情况。这种攻击可能会导致分析人员得出错误的结论或泄露隐私信息。 对抗局部差分隐私操纵攻击的方法包括对数据进行更严格的验证和校验、采用更复杂的算法进行数据发布,以及增加对攻击行为的监测和检测。此外,用户和数据发布者在数据分享和数据发布过程中需要保持警惕,增强对潜在攻击的认识和防范意识。 总之,局部差分隐私的操纵攻击是一种针对隐私保护机制的攻击行为,可通过操纵个体数据或其他数据的投入来干扰数据发布的结果。为了应对这种攻击,需要采取相应的安全措施和对攻击行为进行检测和防范。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值