On Deep Learning with Label Differential Privacy 深度学习中的本地差分隐私技术的应用和改进

本文探讨了在深度学习中保护标签隐私的重要性,提出了一个基于Label Differential Privacy(LDP)的多阶段训练算法。该算法利用每轮训练的先验知识提高准确性,同时保证ε-DP。实验表明,LDP在保持隐私性的同时,其性能优于传统的DP-SGD,并在多阶段训练中表现出更好的鲁棒性。
摘要由CSDN通过智能技术生成

On Deep Learning with Label Differential Privacy

链接: (1) Ghazi, B.; Golowich, N.; Kumar, R.; Manurangsi, P.; Zhang, C. On Deep Learning with Label Differential Privacy. arXiv preprint arXiv:2102.06062 2021.
.

本文主要贡献是在多分类深度学习任务中,提出了一个使用label differential privacy 的深度学习算法,实现了在提高准确率的同时,保证了隐私性,同时该算法利用了每一轮训练的结果作为先验知识,提高下一轮训练的准确率

0. Abstract

  1. 训练大规模的深度学习模型任务中,实现不泄露敏感信息的同时,不影响准确率,一直是一项重大的挑战
  2. 将标签Label看作敏感信息,认作需要被保护
  3. 用理论结果补充了算法,表明在凸经验风险最小化的设置下,Label-DP训练的样本复杂度是与维度无关的,这与普通的差分隐私形成了对比。

1. Introduction

背景
  • 机器学习收集大量数据用于分析,使得人们对在模型训练中使用被使用的个人数据隐私产生担忧
  • 差分隐私Differential Privacy被广泛部署应用在机器学习模型训练中,但如DP-SGD一类的模型训练精度仍远低于无DP约束的模型训练结果(准确率-DP-SGD:73%,准确率 non-DP:95%)
1.1 Label DP
  • 标签Label被认为是敏感的,而输入被认为不是敏感的,只需要保护Label的隐私
举例
  • computational advertising

  • recommendation systems

  • users surveys and analytics

    image-20211109103848762

Our Contributions
  1. 提出了一个新的基于Label DP的阶段深度学习算法,并对其性能进行了测试
  2. 得到了一个带有先验知识Prior的经典随机响应-(General Random Respond)GRR算法——RR with Prior
  3. DP-SGD对于模型大小的伸缩性很差,但是新的算法能够应用在最先进的深度学习框架中,比如ResNet
  4. 实验证明:保护标签要比保护输入特征和标签来得容易,同时对于经验风险凸优化的情况,Label-DP算法的复杂度远小于同时对特征和标签同时执行DP的复杂度,Label-DP实现了于维度无关的界限

2. Preliminaries

Definition 2.1 (Differential Privacy)

对于任一两个只相差一条数据的邻接数据库D和D ,和对任一输出集A的子集S都有

P r [ A ( D ) ∈ S ] ≤ e ε ⋅ P r [ A ( D ’ ) ∈ S ] + δ Pr\lbrack A(D)\in S\rbrack \le e^{\varepsilon} \cdot Pr\lbrack A(D^{’})\in S\rbrack + \delta Pr[A(D)S]eεPr[A(D)S]+δ

Definition 2.2 (Label Differential Privacy)

对于任一仅在label上相差一条数据的训练集D和D ,和对任一输出集A的子集S都有

P r [ A ( D ) ∈ S ] ≤ e ε ⋅ P r [ A ( D ’ ) ∈ S ] + δ Pr\lbrack A(D)\in S\rbrack \le e^{\varepsilon} \cdot Pr\lbrack A(D^{’})\in S\rbrack + \delta Pr[A(D)S]eεPr[A(D)S]+δ

[K]

对于任何的正整数 K, 令 [K] := {1, . . . , K}. [K] 表示标签集

3. Training Algorithms

描述了一个基于Label-DP的深度学习算法

3.0 GRR

对每个Label y i y_i yi使用GRR生成一个隐私的随机Label y i ~ \widetilde{y_i} yi
image-20210830161346424\

GRR机制的具体实现GRR机制的具体实现

3.1.1 v.s. DP-SGD

DP-SGD 每一轮训练都梯度进行新的查询,即进行一次DP算法

而我们的算法只需要对标签进行一次DP算法,后续重复使用

3.1 Multi-Stage Training

直观上:

  • 在一小部分的训练数据集(已GRR)训练模型,使其达到一定的准确率
  • 任何用该模型对剩余的样本进行预测
3.1.1 Algorithm Introduction

image-20210830193432463

初始设置
  • 算法A 输出 概率分类器,给定一个unlabel的样本x,可以给每个类y∈[K]分配一个概率py

  • 将数据集S划分为不相交的S(1), ……, S(T)

  • 并设置第0轮(初始)模型的M0,给说所有的类输出相同的概率分布

在每一轮 t ∈ [ T ] t\in[T] t[T](iteration)
  1. 使用上一轮训练得到的模型M(t-1) ,为S(t)中的每一个样本xi分配对应的概率(p1, . . . , pK)
  2. 利用得到的概率 p ⃗ \vec{p} p 帮助RR更加准确,即进行RRWithPriorp算法,见3.2节
  3. 通过RRWithPriorp得到 y ~ \widetilde{y} y ,使用所有经过随机响应的数据集 S ~ ( 1 ) , … … , S ~ ( t ) \widetilde{S}^{(1)}, ……, \widetilde{S}^{(t)} S (1),,S (t)(即前t轮全部)训练得到模型 M(t)

个人总结

  • 每一轮的RR 都通过上一轮的模型结果M(t-1) 得到关于本轮需要进行RR的数据集的先验知识,即概率分布 来改进本轮RR的准确率 【每一轮的先验知识随着训练也越来越准确】
  • 每一轮的模型训练算法A 都使用前t轮经过RR的数据集(随着每一轮的训练扩大数据集),得到新一轮的模型 M(t) 【每一轮的模型随着更准确数据集的占比的扩大也越来越准确】
LP-MST (Label Privacy Multi-Stage Training)
  1. multi-stage多阶段算法的第t 阶段,即表示为第t轮

    此处多阶段multi stage算法即为 多轮训练算法

  2. LP-1ST表示算法的第一轮,LP-2ST表示算法的第二轮,以此类推

  3. LP-1ST等价于使用普通的RR算法

3.1.2 Observation

对任意的 ε > 0, 如果RRWithPrior满足ε-DP, 则 LP-MST 满足 ε-LabelDP.

证明

组合性

image-20210830201139918

image-20211109203039755

image-20210830205122927

3.2 RR with Prior

已知
  1. 关于x的先验概率 p ⃗ = p 1 , . . . , p k \vec{p}={p_1,...,p_k} p =p1,...,pk
  2. 真实的标签Label y
目标

目标是利用先验概率使得随机化后的标签 y ~ \widetilde{y} y t最大化 输出是正确的概率(等效于最大化信噪比)

约束

对于y算法需要满足ε-DP

3.2.1 RRWithPrior Description

RRWithPrior使用了一个“RRTop-k的子程序”

RRTop-k

(k为预设值,期望输入的尽可能地接近前k个概率大的标签

  • 对RR随机响应机制的一个改进,我们只考虑前k个概率最大的标签

image-20210831143858333

  1. 这里 p ⃗ \vec{p} p 是先验知识,根据 p ⃗ \vec{p} p ,集合 Y k Y_k Yk 是标签label i 对应的概率 p ⃗ \vec{p} p 中前k个大的label标签
  2. 如果真实标签 true label y∈Yk,则在集合 Y k Y_k Yk 中使用随机响应
  3. 否则,我们从这个集合Yk中均等的随机输出一个label标签

Lemma :R

  • 5
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值