
pytorch
pytorch-学习笔记
jacka03
越努力越幸运
展开
-
简单多层感知机(MLP)--pyTorch实现
多层感知机(MLP,Multilayer Perceptron)也叫人工神经网络(ANN,Artificial Neural Network),除了输入输出层,它中间可以有多个隐层,最简单的MLP只含一个隐层,即三层的结构,如下图最简单的MLP:上图模型pyTorch代码:import torchfrom torch.nn import functional as Fx = torch...原创 2020-02-18 00:04:54 · 4646 阅读 · 0 评论 -
简单单层感知机--pyTorch实现
简单的单层感知机梯度计算和梯度更新的pyTorch代码单层感知机模型: 每个输入节点xi与相应的权值wi相乘,然后再l累加,最后再加上一个偏置值b,得到预测值,其数学模型如下:对于单层感知机,其激活函数是sign函数,但是他是不可导的,这里更换为sigmoid函数。代码:import torchfrom torch.nn import functional as Fx = tor...原创 2020-02-17 23:15:16 · 1775 阅读 · 0 评论 -
pyTorch--Gradient 两种方法
torch.autograd.grad(loss, [w1,w2,...])第一个参数是损失函数,第二个参数是loss的变量,返回值是一个包含每个变量的偏导的list,[w1.grad,w2.grad,…]loss.backward()直接用loss调用backword函数,但是这样不会直接返回梯度信息,而是附在每个要求梯度的变量上,可以通过wn.grad查看第i个变量的偏导。...原创 2020-02-16 00:38:48 · 2370 阅读 · 0 评论 -
pyTorch使用autograd.grad报错element 0 of tensors does not require grad and does not have a grad_fn
比如简单的模型f(x)=xw+bimport torchfrom torch.nn import functional as Fx = torch.ones(1)w = torch.full([1], 2)mse = F.mse_loss(torch.ones(1), x * w)torch.autograd.grad(mse, [w])当使用torch.autograd.gr...原创 2020-02-15 17:44:57 · 4976 阅读 · 1 评论 -
MNIST手写数字识别--Pytorch实现
mnist_train.pyimport torchfrom torch import nnfrom torch.nn import functional as Ffrom torch import optimimport torchvisionfrom matplotlib import pyplot as pltfrom utils import plot_image, pl...原创 2020-02-09 10:12:35 · 425 阅读 · 0 评论