MNIST手写数字识别--Pytorch实现

MNIST手写数字识别:分类任务中的最常见的、最简单的数据集mnist手写数字识别,使用的是CPU,没有用CUDA。

网络结构:一个输入层,一个两层的隐含层,一个输出层。

通过三层线性层的嵌套,然后再线性层的末尾添加一个非线性的激活函数Relu来增加网络的非线性的表达能力。

最后一层网络的激活函数一般不用Relu,可以根据具体任务决定,这里并没有用激活函数。

代码:
mnist_train.py

import torch
from torch import nn
from torch.nn import functional as F
from torch import optim

import torchvision
from matplotlib import pyplot as plt

from utils import plot_image, plot_curve, one_hot

batch_size = 512

# 加载数据
# 'mnist_data':加载mnist数据集,路径
# train=True:选择训练集还是测试
# download=True:如果当前文件没有mnist文件就会自动从网上去下载(pytorch官方文档)
# torchvision.transforms.ToTensor():下载好的数据一般是numpy格式,转换成Tensor
# torchvision.transforms.Normalisze((0.1307,), (0.3081,)):正则化过程,为了让数据更好的在0的附近均匀的分布(经验所得,可省略,但是网络性能会略下降)
# batch_size=batch_size:表示一次加载、处理多少张图片,>=1提高效率
# shuffle=True 加载的时候做一个随机的打散

# 加载训练集
train_loader = torch.utils.data.DataLoader(
    torchvision.datasets.MNIST('mnist_data', train=True, download=True,
                               transform=torchvision.transforms.Compose([
                                   torchvision.transforms.ToTensor(),
                                   torchvision.transforms.Normalize(
                                       (0.1307,), (0.3081,))
                               ])),
    batch_size=batch_size, shuffle=True)

# 加载测试集
# shuffle=False 测试集不用打散
test_loader = torch.utils.data.DataLoader(
    torchvision.datasets.MNIST('mnist_data/', train=False, download=True,
                               transform=torchvision.transforms.Compose([
                                   torchvision.transforms.ToTensor(),
                                   torchvision.transforms.Normalize(
                                       (0.1307,), (0.3081,))
                               ])),
    batch_size=batch_size, shuffle=False)

# 中间过程
# x, y = next(iter(train_loader))
# print(x.shape, y.shape, x.min(), x.max()) #迭代过程观察中间数据
# plot_image(x, y, 'image sample')


class Net(nn.Module):

	# 初始化网络
    def __init__(self):
        super(Net, self).__init__()

        # 新建三层,每层x*w+b
        self.fc1 = nn.Linear(28 * 28, 256) # 线性层,28 * 28指输入层,256是经验所得,可以更改,大维到小维降维过程
        self.fc2 = nn.Linear(256, 64) #64是经验得到,大维到小维降维过程
        self.fc3 = nn.Linear(64, 10) # 10是分类结果种类,固定值

	# 计算过程
    def forward(self, x):
        # x: [b, 1, 28, 28]
        # h1 = relu(xw1+b1)
        x = F.relu(self.fc1(x))
        # h2 = relu(h1w2+b2)
        x = F.relu(self.fc2(x))
        # h3 = h2w3+b3,最后一层加不加激活函数取决于具体的任务,输出是输出概率值
        x = self.fc3(x) # 分类问题一般是softmax + mean squre error均方差 ,简单起见直接使用softmax
        return x


# 完成一个实例化
net = Net() 
# [w1, b1, w2, b2, w3, b3]
# net.parameters(): 会帮我们拿到权值 [w1, b1, w2, b2, w3, b3]
# momentum: 动量,帮助更好的优化的一个策略
# lr: 学习率,经验调整
# SGD:梯度下降的优化器
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)

train_loss = []

# 对整个数据集迭代三遍
for epoch in range(3):

	# 对整个数据集迭代一次,即对一个batch迭代一次,一次batch 就512张图片
    for batch_idx, (x, y) in enumerate(train_loader):

        # x: [b, 1, 28, 28], y: [512]
        # [b, 1, 28, 28] => [b, 784]
        x = x.view(x.size(0), 28 * 28) 
        
        # => [b, 10]
        out = net(x) # 经过了class Net(nn.Module)
        
        # [b, 10]
        y_onehot = one_hot(y)
        # loss = mse(out, y_onehot) mse 是 均方差
        loss = F.mse_loss(out, y_onehot) # 1:计算out与y_onehot之间的均方差,得到loss

        optimizer.zero_grad() # 先对梯度进行清零
        loss.backward() # 2:梯度计算过程,计算梯度
        # w' = w - lr*grad
        optimizer.step() # 3:更新权值

        train_loss.append(loss.item())

        if batch_idx % 10 == 0: # 每隔10个batch打印一下
            print(epoch, batch_idx, loss.item()) # 第几个大循环(一共3个), 第多少批次eg:10 20 30 ..., loss显示

plot_curve(train_loss)
# we get optimal [w1, b1, w2, b2, w3, b3]



# 下面用测试集来进行测试
total_correct = 0
for x, y in test_loader:
    x = x.view(x.size(0), 28 * 28)
    out = net(x)
    # out: [b, 10] => pred: [b]
    pred = out.argmax(dim=1)
    correct = pred.eq(y).sum().float().item()
    total_correct += correct

total_num = len(test_loader.dataset)
acc = total_correct / total_num
print('test acc:', acc)

x, y = next(iter(test_loader)) # 取一个batch,查看预测结果
out = net(x.view(x.size(0), 28 * 28))
pred = out.argmax(dim=1) # 取得[b, 10]的10个值的最大值所在位置的索引
plot_image(x, pred, 'test')

辅助文件:utils.py,绘制一些变量过程以及结果

import torch
from matplotlib import pyplot as plt


# 训练过程中loss function下降曲线的绘制
def plot_curve(data):
    fig = plt.figure()
    plt.plot(range(len(data)), data, color='blue')
    plt.legend(['value'], loc='upper right')
    plt.xlabel('step')
    plt.ylabel('value')
    plt.show()

# 绘制图片和图片识别结果以及图片真实的值
def plot_image(img, label, name):
    fig = plt.figure()
    for i in range(6):
        plt.subplot(2, 3, i + 1)
        plt.tight_layout()
        plt.imshow(img[i][0] * 0.3081 + 0.1307, cmap='gray', interpolation='none')
        plt.title("{}: {}".format(name, label[i].item()))
        plt.xticks([])
        plt.yticks([])
    plt.show()

# 通过scatter_函数实现one_hot编码
def one_hot(label, depth=10):
    out = torch.zeros(label.size(0), depth)
    idx = torch.LongTensor(label).view(-1, 1)
    out.scatter_(dim=1, index=idx, value=1)
    return out
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: PyTorch是一种深度学习框架,可以用来实现MNIST手写数字识别MNIST是一个常用的数据集,包含了大量手写数字的图像和对应的标签。我们可以使用PyTorch来构建一个卷积神经网络模型,对这些图像进行分类,从而实现手写数字识别的功能。具体实现过程可以参考PyTorch官方文档或相关教程。 ### 回答2: MNIST是一个经典的手写数字识别问题,其数据集包括60,000个训练样本和10,000个测试样本。PyTorch作为深度学习领域的热门工具,也可以用来实现MNIST手写数字识别。 第一步是加载MNIST数据集,可以使用PyTorch的torchvision.datasets模块实现。需要注意的是,MNIST数据集是灰度图像,需要将其转换为标准的三通道RGB图像。 ```python import torch import torchvision import torchvision.transforms as transforms # 加载数据集 train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]), download=True) test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]), download=True) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False) ``` 第二步是构建模型。在MNIST手写数字识别问题,可以选择使用卷积神经网络(CNN),其可以捕获图像的局部特征,这对于手写数字识别非常有用。 ```python import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(64*12*12, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, kernel_size=2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output model = Net() ``` 第三步是定义优化器和损失函数,并进行训练和测试。在PyTorch,可以选择使用交叉熵损失函数和随机梯度下降(SGD)优化器进行训练。 ```python import torch.optim as optim # 定义优化器和损失函数 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # 训练模型 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 # 测试模型 correct = 0 total = 0 with torch.no_grad(): for data in test_loader: images, labels = data outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) ``` 最后,可以输出测试集上的准确率。对于这个模型,可以得到大约98%的准确率,具有很好的性能。 ### 回答3: PyTorch是一个常用的深度学习框架,通过PyTorch可以方便地实现mnist手写数字识别mnist手写数字数据集是机器学习领域的一个经典数据集,用于训练和测试数字识别算法模型。以下是PyTorch实现mnist手写数字识别的步骤: 1. 获取mnist数据集:可以通过PyTorch提供的工具包torchvision来获取mnist数据集。 2. 数据预处理:将数据集的手写数字图片转换为张量,然后进行标准化处理,使得每个像素值都在0到1之间。 3. 构建模型:可以使用PyTorch提供的nn模块构建模型,常用的模型包括卷积神经网络(CNN)和全连接神经网络(FNN)。例如,可以使用nn.Sequential()函数将多个层逐一堆叠起来,形成一个模型。 4. 训练模型:通过定义损失函数和优化器,使用训练数据集对模型进行训练。常用的损失函数包括交叉熵损失函数和均方误差损失函数,常用的优化器包括随机梯度下降(SGD)和Adam。 5. 测试模型:通过测试数据集对模型进行测试,可以用测试准确率来评估模型的性能。 以下是一个简单的PyTorch实现mnist手写数字识别的代码: ``` python import torch import torch.nn as nn import torch.nn.functional as F import torchvision import torchvision.transforms as transforms # 获取数据集 train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor()) # 数据加载器 train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=100, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=100, shuffle=False) # 构建模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=5) self.conv2 = nn.Conv2d(32, 64, kernel_size=5) self.fc1 = nn.Linear(1024, 256) self.fc2 = nn.Linear(256, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = x.view(-1, 1024) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) model = Net() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 训练模型 num_epochs = 10 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 转换为模型所需格式 images = images.float() labels = labels.long() # 前向传播和计算损失 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和更新参数 optimizer.zero_grad() loss.backward() optimizer.step() # 每100个批次输出一次日志 if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_dataset)//100, loss.item())) # 测试模型 correct = 0 total = 0 with torch.no_grad(): # 不需要计算梯度 for images, labels in test_loader: # 转换为模型所需格式 images = images.float() labels = labels.long() # 前向传播 outputs = model(images) _, predicted = torch.max(outputs.data, 1) # 统计预测正确数和总数 total += labels.size(0) correct += (predicted == labels).sum().item() print('Test Accuracy: {:.2f}%'.format(100 * correct / total)) ``` 以上就是一个基于PyTorchmnist手写数字识别的简单实现方法。需要注意的是,模型的设计和训练过程可能会受到多种因素的影响,例如网络结构、参数初始化、优化器等,需要根据实际情况进行调整和优化,才能达到更好的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值