留作学习资料以后翻阅
动态规划:
在《算法导论》一书中,提及动态规划有两种设计方法。一种方法是带备忘的自顶向下的方法,另一种是自底向上的方法。两种方法具有相同的复杂度,常数略有差别。对于这个问题,显然对于子问题h(i)中i越小,子问题越小,即越基本。一半情况下,会选择自顶向下的方法,在自顶向下的方法中,需要在主体函数外部维护一个额外的数组,来保存中间计算结果。算法导论书中使用的是用一个“引子函数”的方法,即用一个辅助函数,先分配一个数组(更一般的,进行动态数据结构的初始化),然后把这个数组作为参数传递给主体函数,主题函数在递归时,依然将这个数组传递下去,从而保证了在整个递归过程中,所有的子情况都能够访问这个数组。对于这个问题而言,为了简单起见,可以设置一个全局数组。对于辅助数组,还需要做的一点工作就是,需要确认这个数组中的值,是不是我所需要的已经计算的子问题的结果。可以采取的方法很多,这里使用了不属于子问题的解的集合的元素(0)作为标志,有些时候,当问题的解覆盖了整个数据类型的取值范围时,也可能需要更为复杂的方式。
简单理解:
自底向上:由小到大,由细节慢慢堆砌直至整体搭好,不需要缓冲数组,直接用
自顶向下:由大到小,先规划再细节,设定一个缓冲数组进行存储