【优化数学模型】3. 基于Python的整数规划-指派问题求解

在这里插入图片描述


一、整数规划

1. 概述

线性规划模型中的决策变量取值范围是连续型的,这些模型的最优解不一定是整数,但是对于许多实际问题来说,变量取整数时才有意义,例如不可分解产品的数目,如药品数、床位数、病种数、人员数等,或只能用整数来记数的对象。因此有必要在线性规划模型中增加这些决策变量为整数的约束条件限制。我们称这类含有整数决策变量的规划问题为整数规划(Integer Programming, IP)

2. 指派问题

指派问题(Assignment Problem) 是 0-1 整数规划模型最为常见的应用类型之一。

许多实际应用问题可以归结为如下形式:

将不同的任务分派给若干人员完成。由于任务的难易程度以及人员的素质高低各不相同,因此每个人完成不同任务的效率存在差异。于是,如何分派人员完成各种任务才能使得总体工作效率最高成为一项值得研究的课题。这类问题通常被称为指派问题。

标准指派问题可以描述如下:

拟指派 N N N 个人 A 1 A_1 A1, A 2 A_2 A2, … , A N A_N AN去完成

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值