李航《统计学习方法》第2版 第3章课后习题答案

本文详细解答了李航《统计学习方法》第2版第3章的习题,包括k近邻法的空间划分对比、kd树求最近邻点以及输出k近邻的算法。通过实例探讨了k值选择对模型复杂度和预测准确率的影响,并提供了KNN算法的编程实现参考。
摘要由CSDN通过智能技术生成

习题3.1

题目:参照图3.1,在二维空间中给出实例点,画出k为1和2时的k近邻法构成的空间划分,并对其进行比较,体会k值选择与模型复杂度及预测准确率的关系。
在这里插入图片描述

习题3.2

题目:利用例题3.2构造的kd树求点 x = ( 3 , 4.5 ) T 的最近邻点。
在这里插入图片描述在这里插入图片描述

习题3.3

题目:参照算法3.3,写出输出为x的k近邻的算法。

csdn李航的《统计学方法》课程是一门深入浅出的机器学习课程。这门课程围绕着统计学习的基本原理和方法展开,结合了理论与实践,为学习者提供了全面的知识体系。 首先,课程的内容主要涵盖了统计学习的基本概念、模型和算法。通过对统计学习的基本概念的讲解,学习者可以获得对机器学习的整体认识和理解。课程对于各种常见的统计学习模型如线性模型、神经网络、决策树等进行了详细的介绍,并深入剖析了这些模型的原理和应用场景。此外,通过对常见的统计学习算法如最小二乘法、梯度下降法、支持向量机等的讲解,学习者可以了解到如何实现和优化这些模型。 其次,课程提供了大量的实例来帮助学习者加深对知识的理解。课程中会给出典型的统计学习问题,并针对这些问题提供解决方案。这些实例可以帮助学习者更好地掌握课程内容,同时提供了实践机会,让学习者将理论知识应用到实际问题中。 最后,课后还提供了相关的习题和参考答案学习者可以通过做题来巩固所学知识,同时参考答案可以帮助学习者在做题过程中发现和纠正错误,提高学习效果。 总的来说,csdn李航的《统计学方法课后是一门内容全面、难度适中的机器学习课程。通过学习这门课程,学习者可以系统地掌握统计学习的基本原理和方法,为日后的机器学习实践打下坚实的基础。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

#苦行僧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值