李航《统计学习方法》第2版 第6章课后习题答案

本文详细解答了李航《统计学习方法》第6章的习题6.1至6.3,涉及逻辑斯蒂分布的指数族属性、逻辑斯蒂回归的梯度下降算法以及最大熵模型的DFP算法。同时,介绍了使用Python实现逻辑斯蒂回归的梯度下降法,包括随机梯度下降和批量梯度下降,并提供了MNIST数据集分类的实践参考链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


习题6.1


题目:确认逻辑斯谛分布属于指数分布族.
在这里插入图片描述


习题6.2


题目:写出逻辑斯谛回归模型学习的梯度下降算法.
在这里插入图片描述


习题6.3


题目:写出最大熵模型学习的DFP算法.(关于一般的DFP算法参见附录B)
解:这个DFP算法可参考书本附录B


对于习题6.2的逻辑斯蒂回归算法,这里用python自编程实现(学习算法采用梯度下降法)


梯度下降法:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

#苦行僧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值