主成分分析PCA算法(相关矩阵的特征值分解算法和数据矩阵的奇异值分解算法)

主成分分析PCA是一种无监督学习方法,用于数据降维和发现变量间的关系。通过规范化处理数据,PCA可利用相关矩阵的特征值分解或数据矩阵的奇异值分解算法来实现。本文探讨了这两种方法,并解释了为何矩阵V的前k列构成主成分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 主成分分析(Principal component analysis, PCA),常用的无监督学习方法。

下文截图来自:《统计学习方法 第2版 》李航


PCA利用正交变换把由线性相关的变量表示的观测数据转换为少数几个由线性无关变量表示的数据,线性无关的变量称为主成分。主成分个数常小于原始变量个数,so 是一种降维方法。
作用
 1.主要用于发现数据中的基本结构,即数据中变量之间的关系。
 2.也会用在其他机器学习方法的前处理中。

 下面主要讲解样本主成分分析的2种算法,对于样本主成分分析的定义与性质这里不作过多讲解。

1.相关矩阵的特征值分解算法
 传统的PCA通过数据的协方差矩阵或相关矩阵的特征值分解进行。
在做PCA前,为消除各变量量纲的影响。通常要对数据进行规范化处理,使各变量的均值为0,方差为1.
在这里插入图片描述
在这里插入图片描述
Why 规范化后的协方差矩阵S就是样本相关矩阵R?
在这里插入图片描述
直接附上书的截图,(书上有的东西就不敲了):
在这里插入图片描述

2.数据矩阵的奇异值分解算法
 现在常用的方法是通过数据矩阵的奇异值分解进行。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
看完上面也许你会有个疑问:Why矩阵V的前k列就构成了k个样本主成分了,what txx fxxx?
莫慌,下面作出解释:

在这里插入图片描述

 xdjm们,结束了,bye~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

#苦行僧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值