组队竞赛
牛牛举办了一次编程比赛,参加比赛的有3*n个选手,每个选手都有一个水平值a_i.现在要将这些选手进行组队,一共组成n个队伍,即每个队伍3人.牛牛发现队伍的水平值等于该队伍队员中第二高水平值。
例如:
一个队伍三个队员的水平值分别是3,3,3.那么队伍的水平值是3
一个队伍三个队员的水平值分别是3,2,3.那么队伍的水平值是3
一个队伍三个队员的水平值分别是1,5,2.那么队伍的水平值是2
为了让比赛更有看点,牛牛想安排队伍使所有队伍的水平值总和最大。
如样例所示:
如果牛牛把6个队员划分到两个队伍
如果方案为:
team1:{1,2,5}, team2:{5,5,8}, 这时候水平值总和为7.
而如果方案为:
team1:{2,5,8}, team2:{1,5,5}, 这时候水平值总和为10.
没有比总和为10更大的方案,所以输出10.
题目分析:队伍的水平值等于该队伍队员中第二高水平值,如果队伍为{1,2,3},即队伍水平值为2,要使所有队伍的水平值总和最大,现在数组arr为:
1,2,3,4,5,6,7,8,9
最大的方案是:
1 8 9
2 6 7
3 4 5
即8+6+4=18。
先排序,每次取数组中最大的两个数和最小的一个数去组队,这样就能保证所有队伍的水平值总和最大。
8 , 6 ,4,很容易发现规律,实际就是求数组从arr[n-2]加每次隔着一个数的数,队伍数是几,就加几个数。
代码如下:
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
class Solution
{
public:
void Sum(vector<int>& v,int n)
{
int len=v.size();
long long ret=0;
int count=0;
sort(v.begin(),v.end());
for(int i=len-2;i>=0;i-=2)
{
if(count>=n)
break;
ret+=v[i];
count++;
}
cout<<ret<<endl;
}
};
int main()
{
int n=0;
int ret=0;
vector<int> v;
cin>>n;
v.resize(n*3);
for(int i=0;i<n*3;i++)
{
cin>>v[i];
}
Solution s;
s.Sum(v,n);
return 0;
}