数据预处理——均值填充缺失值+归一化

数据预处理——均值填充缺失值+归一化

概述

数据预处理中,将所有缺失的值替换为相应特征的平均值。为了将所有特征放在一个共同的尺度上, 通过将特征重新缩放到零均值和单位方差来标准化数据:
x=(x-x.mean())/x.std()

代码

假设存在数据:

data = pd.DataFrame([10,5,20,None,80],columns=['col'])

在这里插入图片描述

在对数据归一化时,往往会用到数据在该特征下的均值mean和标准差std,归一化后的均值为0,可用0填充缺失值:

normalize = data.apply(lambda x: (x - x.mean()) / (x.std()))
result = normalize.fillna(0)

在这里插入图片描述

归一化与填充顺序调换

归一化函数和fillna()的顺序会影响最终结果,若把顺序调换,则除了空缺值,其他值结果不同:

normalize = data.fillna(data.mean()).apply(lambda x: (x - x.mean()) / (x.std()))

在这里插入图片描述
因为在fillna()函数执行前后,作用于均值函数mean()和标准差函数std()的数据量不同,前后数据的标准差不同

填充空缺值前,对于数据data,参与求均值和标准差的数据仅为4条非空数据。

print(data.mean(),"\n",data.std())

在这里插入图片描述

而填充空缺值之后,参与求均值和标准差的数据为5条,标准差偏小。

d1 = data.fillna(data.mean())
print(d1.mean(),"\n",d1.std())

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值