数据预处理——均值填充缺失值+归一化
概述
数据预处理中,将所有缺失的值替换为相应特征的平均值。为了将所有特征放在一个共同的尺度上, 通过将特征重新缩放到零均值和单位方差来标准化数据:
x=(x-x.mean())/x.std()
代码
假设存在数据:
data = pd.DataFrame([10,5,20,None,80],columns=['col'])
在对数据归一化时,往往会用到数据在该特征下的均值mean和标准差std,归一化后的均值为0,可用0填充缺失值:
normalize = data.apply(lambda x: (x - x.mean()) / (x.std()))
result = normalize.fillna(0)
归一化与填充顺序调换
归一化函数和fillna()的顺序会影响最终结果,若把顺序调换,则除了空缺值,其他值结果不同:
normalize = data.fillna(data.mean()).apply(lambda x: (x - x.mean()) / (x.std()))
因为在fillna()函数执行前后,作用于均值函数mean()和标准差函数std()的数据量不同,前后数据的标准差不同。
填充空缺值前,对于数据data,参与求均值和标准差的数据仅为4条非空数据。
print(data.mean(),"\n",data.std())
而填充空缺值之后,参与求均值和标准差的数据为5条,标准差偏小。
d1 = data.fillna(data.mean())
print(d1.mean(),"\n",d1.std())