目录
- 随机变量及分布函数
- 离散型随机变量及分布律、连续型随机变量及密度函数
- 补充:
- 求导
- 不定积分与微分的关系
- 反三角函数求导
- 常见的随机变量的数据期望与方差
3.随机变量及分布函数
-
随机变量(random variable)
对随机试验,每次试验前都不知道会取得什么样的值,由于取值的随机性,则称这样的变量为随机变量。
随机变量可通过随机事件来表示。
-
离散型随机变量(discrete random variable)
可能的取值点只有有限个或无限可列个。
-
连续型随机变量(continuous random variable)
可能的取值点充满一个连续区域。
-
-
分布函数
对于随机变量X,我们关心它们取哪些值,但更关心它们以多大的概率取哪些值。
定义:设随机变量X,x为任意实数,称函数F(x)=P(X<=x)为X的分布函数。也记X~F(x).
-
性质
-
非降性 | 单调非减性
F(x)是一个非减函数。对任意实数x0<x1,则F(x0)<F(x1)
-
有界性
0<F(x)<1,F(-∞)=0,F(+∞)=1
-
-
例题:设随机变量X具有概率密度
f ( x ) = { 0 , x ≤ 0 K e − 3 x , x > 0 f(x) = \{^{K{e^{-3x}}~, ~~x>0}_{0~,~~~~~~~~~~~~~x≤0} f(x)={0 , x≤0Ke−3x , x>0
1)试确定常数K;
2)求P{X>0.1};
3)求F(x)
解:
1)由 ∫ − ∞ + ∞ f ( x ) d x = 1 ∫^{+∞}_{-∞}f(x)dx = 1 ∫−∞+∞f(x)dx=1知,
∫ − ∞ + ∞ f ( x ) d x ∫^{+∞}_{-∞}f(x)dx ∫−∞+∞f(x)dx
= ∫ 0 + ∞ K e − 3 x d x = ∫^{+∞}_{0}Ke{^{-3x}}dx =∫0+∞Ke−3xdx
= 1 − 3 ∫ 0 + ∞ K e − 3 x d ( − 3 x ) = {{1}\over{-3}}∫^{+∞}_{0}Ke{^{-3x}}d(-3x) =−31∫0+∞Ke−3xd(−3x) ---- (1)
= 1 − 3 K e − 3 x ∫ 0 + ∞ =\frac{1}{-3}Ke{^{-3x}}∫^{+∞}_{0} =−31Ke−3x∫0+∞ ---- (2)
= K 3 = \frac{K}{3} =3K
= 1 = 1 =1
注:(1)e的t次幂是它本身,常数的积分是它本身;(2)e的无穷次方为0,e的0次方为1,相减为-1.
2) P { X > 0.1 } = ∫ 0.1 + ∞ 3 e − 3 x d x = − e − 3 x ∫ 0.1 + ∞ = e − 0.3 P\{X>0.1\}= ∫^{+∞}_{0.1}3e{^{-3x}}dx= -e{^{-3x}}∫^{+∞}_{0.1}=e^{-0.3} P{X>0.1}=∫0.1+∞3e−3xdx=−e−3x∫0.1+∞=e−0.3>>> math.pow(math.e, -0.3) 0.7408182206817179
3)由定义 F ( X ) = ∫ − ∞ x f ( x ) d x F(X)=∫^{x}_{-∞}f(x)dx F(X)=∫−∞xf(x)dx知,当x<0时,F(x)=0;当x≥0时,
F ( X ) = ∫ 0 x f ( x ) d x = F ( X ) = ∫ 0 x 3 e − 3 t d t = − e − 3 t ∫ 0 + ∞ = 1 − e − 3 x F(X)=∫^{x}_{0}f(x)dx=F(X)=∫^{x}_{0}3e{^{-3t}}dt=-e{^{-3t}}∫^{+∞}_{0}=1-e^{-3x} F(X)=∫0xf(x)dx=F(X)=∫0x3e−3tdt=−e−3t∫0+∞=1−e−3x
F ( X ) = { 0 , x < 0 1 − e − 3 x , x ≥ 0 F(X)=\{^{1-e^{-3x},x≥0}_{0,x<0} F(X)={0,x<01−e−3x,x≥0
-
4.离散型随机变量及分布律、连续型随机变量及概率密度
-
几种常见的离散型分布
-
0-1分布 | 两点分布(0-1 distribution)
如果随机变量X只能取0和1两个值。则它的分布列为P{X=1} = p, P{X=0} = 1-p{0 < p < 1}
A 1 0 P p 1-p -
伯努力试验
设试验E只有两种可能:事件A发生和事件A不发生,则称E为伯努力试验。P(A) = p,P(A)=1-p(0<p<1)。
伯努力概型,或称n重伯努力试验,即将伯努力试验重复n次。
-
二项分布
若随机变量X只能取值0,1,2,……,n,它的分布列为:
P { X = k } = C n k p k q n − k P\{X = k\} = C^k_np^kq^{n-k} P{X=k}=Cnkpkqn−k
( k = 0 , 1 , 2 , … … , n ; 0 < p < 1 ; q = 1 − p ) , 记 作 X b ( n , p ) (k=0,1,2,……,n; 0<p<1;q=1-p),记作X~b(n,p) (k=0,1,2,……,n;0<p<1;q=1−p),记作X b(n,p).
tips: 当n=1时,就是两点分布。
-
泊松分布
如果随机变量X所有可能的取值为0,1,2,…,它取各个值的概率为:
P { X = k } = λ k k ! e − λ ( k = 0 , 1 , 2 , … ) ; λ 为 常 数 , λ > 0 P\{X=k\}=\frac{λ^k}{k!}e^{-λ}(k=0,1,2,…);λ为常数,λ>0 P{X=k}=k!λke−λ(k=0,1,2,…);λ为常数,λ>0,称X服从参数λ的泊松分布,记X~π(λ).
应用:某段时间内电话接到的呼叫次数、候车人数、某页书在印刷过程中错误的字数等都可以用泊松分布来描述。
当n较大,而p较小,且np是一个大小适当的数(通常0<np≤8),可用泊松分布替代二项分布(取λ=np)。
-
-
常见的连续型随机分布
-
均匀分布
如果随机变量的概率密度函数为
f ( x ) = { 1 b − a , a ≤ x ≤ b 0 , 其 它 f(x)= \begin{cases} \frac{1}{b-a},a≤x≤b\\ 0,其它 \end{cases} f(x)={b−a1,a≤x≤b0,其它则称X服从[a,b]上的均匀分布.记X~U(a,b).
意义:X取值于[a,b]中任意小区间的概率与该小区间的长度呈正比,与该小区间的位置无关。
均匀分布的分布函数: F ( x ) = { 0 , x < a x − a b − a , a ≤ x < b 1 , x ≥ b F(x)= \begin{cases} 0,x<a\\ \frac{x-a}{b-a},a≤x<b\\ 1,x≥b \end{cases} F(x)=⎩⎪⎨⎪⎧0,x<ab−ax−a,a≤x<b1,x≥b -
指数分布
随机变量的概率密度函数:
(λ>0),记X~Exp(λ)
指数函数的一个重要特性是无记忆性(或遗失记忆性)。这表示如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。
指数分布,又称寿命分布,如电子元器件的寿命、电话通话的时间、随机服务系统的服务时间等都可近似看作是服从指数分布。 -
正态分布
也称常态分布、高斯分布、钟形曲线。
若随机变量X服从一个数学期望为μ、方差为σ^2 的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。
标准正态分布表。
-
5.知识点补充
- 不定积分与微分的关系
- 反三角函数求导
- 常见随机变量的数学期望与方差